Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Mineralogical ClassificationIMA 2018-A = crystal structure determination and redefinition of eztlite

28th Jan 2019 14:56 UTCMarco E. Ciriotti Manager

Reference:

▪ Missen, O.P., Mills, S.J., Spratt, J., Welch, M.D., Birch, W.D., Rumsey, M.S., Vylita, J. (2018): The crystal structure determination and redefinition of eztlite, Pb2+2Fe3+3(Te4+O3)3(SO4)O2Cl. Mineralogical Magazine, 82, 1355-1367.


Abstract:

The crystal structure of eztlite has been determined using single-crystal synchrotron X-ray diffraction and supported using electron microprobe analysis and powder diffraction. Eztlite, a secondary tellurium mineral from Moctezuma mine, Mexico, is monoclinic, space group Cm, with a = 11.466(2) Å, b = 19.775(4) Å, c = 10.497(2) Å, β = 102.62(3)° and V = 2322.6(9) Å3. The chemical formula of eztlite has been revised to Pb2+2Fe3+3(Te4+O3)3(SO4)O2Cl from that stated by Williams (1982) as Fe3+6Pb2+2(Te4+O3)3(Te6+O6)(OH)10·nH2O. This change has been accepted by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, Proposal 18-A. Eztlite was reported to be a mixed-valence Te oxysalt; however the crystal structure, bond valence analysis and charge balance considerations clearly show that all Te is tetravalent. Eztlite contains a unique combination of elements and is only the second Te oxysalt to contain both sulphate and chloride. The crystal structure of eztlite contains mitridatite-like layers, with a repeating triangular nonameric [Fe3+9O36]45- arrangement formed by nine edge-sharing Fe3+O6 octahedra, decorated by four trigonal pyramidal Te4+O3 groups, compared with PO4 or AsO4 tetrahedra in mitridatite-type minerals. In eztlite, all four tellurite groups associated with one nonamer are orientated with the lone pair of the Te atoms pointing in the same direction, whereas in mitridatite the central tetrahedron is orientated in the opposite direction to the others. In mitridatite-type structures, interlayer connections are formed exclusively via Ca2+ and water molecules, whereas the eztlite interlayer contains Pb2+, sulphate tetrahedra and Cl-. Interlayer connectivity in eztlite is achieved primarily by connections via the long bonds of Pbφ8 and Pbφ9 groups to sulphate tetrahedra and to Cl-. Secondary connectivity is via Te–O and Te–Cl bonds.
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: April 27, 2024 01:52:31
Go to top of page