Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Skrzypek, Etienne, Sakata, Shuhei, Sorger, Dominik (2020) Alteration of magmatic monazite in granitoids from the Ryoke belt (SW Japan): Processes and consequences. American Mineralogist, 105 (4) 538-554 doi:10.2138/am-2020-7025

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleAlteration of magmatic monazite in granitoids from the Ryoke belt (SW Japan): Processes and consequences
JournalAmerican Mineralogist
AuthorsSkrzypek, EtienneAuthor
Sakata, ShuheiAuthor
Sorger, DominikAuthor
Year2020 (April 1)Volume105
Page(s)538-554Issue4
PublisherMineralogical Society of America
DOIdoi:10.2138/am-2020-7025Search in ResearchGate
Mindat Ref. ID398917Long-form Identifiermindat:1:5:398917:7
GUID1022e5ae-39b9-404e-a716-e722d9982c39
Full ReferenceSkrzypek, Etienne, Sakata, Shuhei, Sorger, Dominik (2020) Alteration of magmatic monazite in granitoids from the Ryoke belt (SW Japan): Processes and consequences. American Mineralogist, 105 (4) 538-554 doi:10.2138/am-2020-7025
Plain TextSkrzypek, Etienne, Sakata, Shuhei, Sorger, Dominik (2020) Alteration of magmatic monazite in granitoids from the Ryoke belt (SW Japan): Processes and consequences. American Mineralogist, 105 (4) 538-554 doi:10.2138/am-2020-7025
In(2020, April) American Mineralogist Vol. 105 (4) Mineralogical Society of America
Abstract/NotesAbstract
The alteration of magmatic monazite and its consequences for monazite geochronology are explored in granitoids from the western part of the Ryoke belt (Iwakuni-Yanai area, SW Japan). Biotite-granite samples were collected in two plutons emplaced slightly before the main tectono-metamorphic event: the first one, a massive granite (Shimokuhara) adjoins schistose rocks affected by greenschist facies metamorphism; and the second, a gneissose granite (Namera) adjoins migmatitic gneiss that experienced upper-amphibolite facies conditions. Despite contrasting textures, the granite samples have similar mineral modes and compositions. Monazite in the massive granite is dominated by primary domains with limited secondary recrystallization along cracks and veinlets. It is variably replaced by allanite+apatite±xenotime±Th-U-rich phases. The outermost rims of primary domains yield a weighted average 206Pb/238U date of 102 ± 2 Ma while the Th-U phases show Th-U-Pb dates of 58 ± 5 and 15 to 14 ± 2–3 Ma. Monazite in the gneissose granite preserves sector- or oscillatory-zoned primary domains cross-cut by secondary domains enriched in Ca, Y, U, P, and containing numerous inclusions. The secondary domains preserve concordant 206Pb/238U dates spreading from 102 ± 3 to 91 ± 2 Ma while primary domain analyses are commonly discordant and range from 116 to 101 Ma.
Monazite alteration textures in the two granites chiefly reflect differences in their post-magmatic histories. In the massive granite, monazite replacement occurred via a nearly stoichiometrically balanced reaction reflecting interaction with an aqueous fluid enriched in Ca+Al+Si±F during hydrothermal alteration of the granitic assemblage, likely below 500 °C. In the gneissose granite, a small amount of anatectic melt, probably derived from the neighboring metasedimentary rocks, was responsible for pseudomorphic recrystallization of monazite by dissolution-reprecipitation above 600 °C. Regardless of whether monazite underwent replacement or recrystallization, primary monazite domains preserve the age of magmatic crystallization for both plutons (102 ± 2 and 106 ± 5 Ma). Conversely, the age of monazite alteration is not easily resolved. Monazite replacement in the massive granite might be constrained using the Th-U-rich alteration products; with due caution and despite probable radiogenic Pb loss, the oldest date of 58 ± 5 Ma could be ascribed to chloritization during final exhumation of the granite. The spread in apparently concordant 206Pb/238U dates for secondary domains in the gneissose granite is attributed to incomplete isotopic resetting during dissolution-reprecipitation, and the youngest date of 91 ± 2 Ma is considered as the age of monazite recrystallization during a suprasolidus metamorphic event. These results reveal a diachronous, ca. 10 Ma-long high-temperature (HT) history and an overall duration of about 15 Ma for the metamorphic evolution of the western part of the Ryoke belt.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: May 1, 2024 07:17:53
Go to top of page