Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Bartels Mine; Cape Mountain; Canoe; Percy Lode Mine, Port Clarence Mining District, Nome Census Area, Alaska, USAi
Regional Level Types
Bartels Mine; Cape Mountain; Canoe; Percy Lode MineMine
Port Clarence Mining DistrictMining District
Nome Census AreaCensus Area
AlaskaState
USACountry

This page is currently not sponsored. Click here to sponsor this page.
PhotosMapsSearch
Latitude & Longitude (WGS84):
65° 35' 12'' North , 167° 57' 32'' West
Latitude & Longitude (decimal):
Type:
KΓΆppen climate type:
Nearest Settlements:
PlacePopulationDistance
Wales149 (2018)6.4km
Mindat Locality ID:
196382
Long-form identifier:
mindat:1:2:196382:6
GUID (UUID V4):
3639377d-b3ea-412e-88c1-b5cfe2fe8931


Although scattered small grains of scheelite were identified in pyroxene-fluorite hornfels/skarn by Knopf (1908, p. 38), tungsten is generally present in only anomalous amounts. Tungsten was not a significant component of placer concentrates from Cape Creek or Goodwin Gulch.
Location: This is an area of lode cassiterite mineralization at an elevation of about 1,000 feet, that straddles the ridge separating the headwaters of Cape Creek (TE006) and Goodwin Gulch (TE004); it is the source area for most of the cassiterite in the Cape Creek (TE006) and Goodwin Gulch (TE004) placers (Mulligan, 1966, p. 22). Several different cassiterite-bearing zones in bedrock are present within an area of about 2,000 feet long in a north-south direction and 800 feet across in an east-west direction; the area includes the Canoe prospect and Percy Lode (Mulligan, 1966, p. 22). This area was not identified separately by Cobb and Sainsbury (1972). Cobb summarized relevant references under the name 'Cape Mtn.'.
Geology: The Bartel Mine area contains the most significant lode cassiterite mineralization known in the Cape Mountain area; it is the source area for the Cape Creek and Goodwin Gulch placers that produced about 1,670 short tons of tin. The only lode production (6 short tons) from the Cape Mountain area is from the Bartel Mine. The mineralized area straddles the contact of the Late Cretaceous Cape Mountain biotite granite (78.8 +/- 2.9 my; Hudson and Arth, 1983, p. 789) with Mississippian marble (Sainsbury, 1972). The mineralization includes cassiterite disseminated in tourmalinized granite, quartz-cassiterite grains in granite, and cassiterite-bearing lenticular pods in marble. Selvages and pods of toumalinized granite are developed locally along fractures and discontinuous small quartz veins; felsic dikes locally have tourmalinized margins. Cassiterite forms disseminations and clots in some of the tourmalinized rocks but much of this material contains only anomalous amounts of tin. In general, toumalinization is very minor in the area (Collier, 1904, p. 39; Hudson, 1984). Cassiterite-bearing quartz veins in granite are small, discontinous and locally developed. They have been identified in one area about 1,000 feet south of the Lucky Queen adit (Mulligan, 1966, p. 24). Here, USBM dozer trenches exposed clay-altered granite with minor quartz veins that generally contain just a few hundreths per cent tin although one 3-foot wide trench sample contained 1.34 % tin (Mulligan, 1966, p. 30). The most significant lode mineralization in the area is in the northeast contact zone of the Cape Mountain biotite granite with adjacent marble. Here discontinuous veins and pods of quartz, muscovite, and cassiterite are present along granite/marble contacts and more commonly within marble. Only minor mineralization appears to be developed solely within granite. The grade of these deposits can be very high but their individual size is small. The largest individual deposit that has been identified is about 150 feet long and a few to 66 inches wide (Heide and others, 1946). The average width of this deposit is 17 inches and the average grade (as determined from 18 trench samples) is 7.24 % tin (Heide and others, 1946, p. 10). The cassiterite is commonly in coarse aggregates of subhedral to euhedral crystals. This type of mineralization appears to be the principal source of placer cassiterite in nearby Cape Creek and Goodwin Gulch. Boron, fluorine, and arsenic geochemically characterize the mineralization in this area (Hudson, 1984, p. 12). Two high grade samples (6.3 and 11.8 % tin) collected from USBM trenches contained greater than 1,000 ppm arsenic, variable boron contents (9,380 and 235 ppm respectively), and moderate amounts of fluorine (2,800 and 650 ppm respectively). In fourteen samples from the mineralized area (including the two high grade samples above; Hudson, 1984, p. 14), base metals have low to anomalous concentrations, tungsten ranges up to 610 ppm, and tantalum ranges from 3 to 14 ppm. Hydrothermal alteration or calc-silicate development is conspicuously not widespread or extensively developed in the area. Knopf (1908, p. 37-38) describes local granite pegmatites with thin pyroxene-fluorite-quartz-calcite hornfels along contacts with marble; scheelite and pyrrohotite are present as sparse, scattered grains in this hornfels.
Workings: The adits and drifts of the Bartels Mine extended up to 1,150 feet in combined length (Steidtmann and Cathcart, 1922). Five short diamond-drill holes and several dozer trenches were completed by the USBM (Heide and others, 1946). The USBM also completed detrital cassiterite mapping on slopes periperial to the mine area (Mulligan, 1966).
Age: Late Cretaceous; the mineralization is interpreted to be linked to the evolution of the Cape Mountain biotite granite which has been determined to be 78.8 +/- 2.9 my old by the K/Ar method (Hudson and Arth, 1983, p. 769).
Alteration: Alteration at Cape Mountain is conspicuous by its absence. Clay development has been noted along fractures and bedding and minor tourmaline replacement of granite is present along some contacts. Tourmaline may also be disseminated in marble adjacent to granite. Minor skarn development includes pyroxene-fluorite +/- quartz, calcite, scheelite, scapolite, and pyrrohotite selvages in marble adjacent to small granite pegmatites. Calcite-muscovite-fluorite-tremolite rocks found on mine dumps may be a replacement selvage in marble but they are not abundant in the area. Discontinuous and small quartz veins also contain muscovite, some tourmaline, and locally abundant iron-oxide. However, many altered fractures or veins consisting of gossanous quartz+/-tourmaline contain only anomalous amounts of tin. The only sulfide mineral that is commonly present is arsenopyrite, both as disseminations in yellow-orange weathering seriate granite and in vein assemblages.
Production: Six short tons of tin are reported to have been produced from the Bartels Mine in 1905 or 1906 (Heide and others, 1946; Mulligan, 1966, p. 8).
Reserves: Not defined but mining has been minimal.

Commodities (Major) - Sn
Development Status: Yes, small
Deposit Model: Cassiterite-bearing veins and pods in marble, at marble/granite contacts, and i

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded at this locality.


Mineral List


6 valid minerals.

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 2 - Sulphides and Sulfosalts
β“˜Pyrite2.EB.05aFeS2
β“˜Arsenopyrite2.EB.20FeAsS
Group 3 - Halides
β“˜Fluorite3.AB.25CaF2
Group 4 - Oxides and Hydroxides
β“˜Quartz4.DA.05SiO2
β“˜Cassiterite4.DB.05SnO2
Group 9 - Silicates
β“˜Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
Unclassified
β“˜'Clay minerals'-
β“˜'Feldspar Group'-
β“˜'Tourmaline'-AD3G6 (T6O18)(BO3)3X3Z

List of minerals for each chemical element

HHydrogen
Hβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
BBoron
Bβ“˜ TourmalineAD3G6 (T6O18)(BO3)3X3Z
OOxygen
Oβ“˜ CassiteriteSnO2
Oβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Oβ“˜ QuartzSiO2
Oβ“˜ TourmalineAD3G6 (T6O18)(BO3)3X3Z
FFluorine
Fβ“˜ FluoriteCaF2
AlAluminium
Alβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
SiSilicon
Siβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Siβ“˜ QuartzSiO2
SSulfur
Sβ“˜ ArsenopyriteFeAsS
Sβ“˜ PyriteFeS2
KPotassium
Kβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
CaCalcium
Caβ“˜ FluoriteCaF2
FeIron
Feβ“˜ ArsenopyriteFeAsS
Feβ“˜ PyriteFeS2
AsArsenic
Asβ“˜ ArsenopyriteFeAsS
SnTin
Snβ“˜ CassiteriteSnO2

Other Databases

Link to USGS - Alaska:TE009

Other Regions, Features and Areas containing this locality


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.

References

 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: April 26, 2024 03:16:19 Page updated: April 14, 2024 03:02:00
Go to top of page