Help mindat.org|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportAdd Glossary Item
StatisticsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Quartz

This page kindly sponsored by Dragon Minerals
Formula:
SiO2
System:
Trigonal
Colour:
Colorless, Purple, Rose, ...
Lustre:
Vitreous
Hardness:
7
Name:
Quartz has been known and appreciated since pre-historic times. The most ancient name known is recorded by Theophrastus in about 300-325 BCE, κρύσταλλος or kristallos. The varietal names, rock crystal and bergcrystal, preserve the ancient usage. The root words κρύοσ signifying ice cold and στέλλειυ to contract (or solidify) suggest the ancient belief that kritallos was permanently solidified ice.

The earliest printed use of "quertz" was anonymously published in 1505, but attributed to a physician in Freiberg. Germany, Ulrich Rühlein von Kalbe. By 1530, Agricola used the spelling "quartz" as well as "quertze", but Agricola also referred to "crystallum", "silicum", "silex", and silice". Tomkeieff (1941) suggested an etymology for quartz: "The Saxon miners called large veins - Gänge, and the small cross veins or stringers - Querklüfte. The name ore (Erz, Ertz) was applied to the metallic minerals, the gangue or to the vein material as a whole.

In the Erzgebirge, silver ore is frequently found in small cross veins composed of silica. It may be that this ore was called by the Saxon miners 'Querkluftertz' or the cross-vein-ore. Such a clumsy word as 'Querkluftertz' could easily be condensed to 'Querertz' and then to 'Quertz', and eventually become 'Quarz' in German, 'quarzum' in Latin and 'quartz' in English." Tomkeieff (1941, q.v.) noted that "quartz", in its various spellings, was not used by other noted contemporary authors. "Quartz" was used in later literature referring to the Saxony mining district, but seldom elsewhere.

Gradually, there were more references to quartz: E. Brown in 1685 and Johan Gottschalk Wallerius in 1747. In 1669, Nicolaus Steno (Niels Steensen) obliquely formulated the concept of the constancy of interfacial angles in the caption of an illustration of quartz crystals. He referred to them as "cristallus" and "crystallus montium".

Tomkeieff (1941) also noted that Erasmus Bartholinus (1669) used the various spellings for "crystal" to signify other species than quartz and that crystal could refer to other "angulata corpora" (bodies with angles): "In any case in the second half of the XVIIIth century quartz became established as a name of a particular mineral and the name crystal became a generic term synonymous with the old term 'corus angulatum'."
Isostructural with:
Quartz is the most common mineral found on the surface of the Earth. A significant component of many igneous, metamorphic and sedimentary rocks, this natural form of silicon dioxide is found in an impressive range of varieties and colours. There are many names for different varieties: Cryptocrystalline varieties of quartz are listed separately under chalcedony, and include agate.

Visit gemdat.org for gemological information about Quartz.

Classification of Quartz

Valid - first described prior to 1959 (pre-IMA) - "Grandfathered"
4.DA.05

4 : OXIDES (Hydroxides, V[5,6] vanadates, arsenites, antimonites, bismuthites, sulfites, selenites, tellurites, iodates)
D : Metal: Oxygen = 1:2 and similar
A : With small cations: Silica family
Dana 7th ed.:
75.1.3.1
75.1.3.1

75 : TECTOSILICATES Si Tetrahedral Frameworks
1 : Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
7.8.1

7 : Oxides and Hydroxides
8 : Oxides of Si
mindat.org URL:
http://www.mindat.org/min-3337.html
Please feel free to link to this page.

Occurrences of Quartz

Geological Setting:
Most of them...

Physical Properties of Quartz

Vitreous
Diaphaneity (Transparency):
Transparent, Translucent
Colour:
Colorless, Purple, Rose, Red, Black, Yellow, Brown, Green, Blue, Orange, etc.
Streak:
White
Hardness (Mohs):
7
Hardness Data:
Mohs hardness reference species
Comment:
Some variability by direction.
Tenacity:
Brittle
Cleavage:
Poor/Indistinct
The rhombohedral cleavage r{1011} is most often seen, there are at least six others reported.
Fracture:
Conchoidal
Comment:
Tough when massive
Density:
2.65 - 2.66 g/cm3 (Measured)    2.66 g/cm3 (Calculated)

Crystallography of Quartz

Crystal System:
Trigonal
Class (H-M):
3 2 - Trapezohedral
Space Group:
P31 2 1
Cell Parameters:
a = 4.9133Å, c = 5.4053Å
Ratio:
a:c = 1 : 1.1
Unit Cell Volume:
V 113.00 ų (Calculated from Unit Cell)
Z:
3
Morphology:
Typically long prismatic with steep pyramidal terminations, but may be short prismatic to bipyramidal, or needle-like; massive material (especially agate & chalcedony) may be microscopically fibrous.
Twinning:
Dauphiné law.
Brazil law.
Japan law.
Others for beta-quartz...
Right-handed Dauphiné law twin
Left-handed Dauphiné law twin
Typical irregular intergrowth of Dauphiné law twin domains
Right-handed Dauphiné law twin
Left-handed Dauphiné law twin
Typical irregular intergrowth of Dauphiné law twin domains
Right-handed Dauphiné law twin
Left-handed Dauphiné law twin
Typical irregular intergrowth of Dauphiné law twin domains
Dauphiné law twin with re-entrant angles (rare)
Japan law twin
Dauphiné law twin with re-entrant angles (rare)
Japan law twin
Dauphiné law twin with re-entrant angles (rare)
Japan law twin

Crystallographic forms of Quartz

Crystal Atlas:
Image Loading
Click on an icon to view
Quartz no.5 - Goldschmidt (1913-1926)
Quartz no.7 - Goldschmidt (1913-1926)
Quartz no.9 - Goldschmidt (1913-1926)
Quartz no.10 - Goldschmidt (1913-1926)
Quartz no.12 - Goldschmidt (1913-1926)
Quartz no.23 - Goldschmidt (1913-1926)
Quartz no.35 - Goldschmidt (1913-1926)
Quartz no.46 - Goldschmidt (1913-1926)
Quartz no.47 - Goldschmidt (1913-1926)
Quartz no.96 - Goldschmidt (1913-1926)
Quartz no.121 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by www.smorf.nl.

Toggle
Edge Lines | Miller Indicies | Axes

Transparency
Opaque | Translucent | Transparent

View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

Crystal Structure

Structure
Reference
Kihara K (1990) An X-ray study of the temperature dependence of the quartz structure Sample: at T = 298 K. European Journal of Mineralogy 2:63-77.

Show
Unit Cell | Structure | Polyhedra

Style
Black Background | White Background

Rotation
Stop | Start

Labels
Label Atoms | Off

More Crystal Structures
Click here to view more crystal structures at the American Mineralogist Crystal Structure Database
X-Ray Powder Diffraction:
Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
X-Ray Powder Diffraction Data:
d-spacingIntensity
4.257 (22)
3.342 (100)
2.457 (8)
2.282 (8)
1.8179 (14)
1.5418 (9)
1.3718 (8)

Optical Data of Quartz

Type:
Uniaxial (+)
RI values:
nω = 1.543 - 1.545 nε = 1.552 - 1.554
Birefringence:
0.009
Max Birefringence:
δ = 0.009
Image shows birefringence interference colour range (at 30µm thickness) and does not take into account mineral colouration.
Surface Relief:
Low
Dispersion:
low, 0.009
Comments:
Varieties colored by trace elements built into the crystal lattice, as opposed to varieties colored by inclusions, generally show dichroism: smoky quartz, amethyst, citrine, prasiolite, "rose quartz in crystals" (a.k.a. pink quartz).

Chemical Properties of Quartz

Formula:
SiO2
Essential elements:
All elements listed in formula:
Common Impurities:
Traces,of,Al,Fe,Ti,Li,Ca,Mg,etc

Relationship of Quartz to other Species

4.DA.10OpalSiO2 · nH2O
4.DA.10TridymiteSiO2
4.DA.15CristobaliteSiO2
4.DA.20MogániteSiO2
4.DA.25Melanophlogite46SiO2 · 6(N2,CO2) · 2(CH4,N2)
4.DA.30LechatelieriteSiO2
4.DA.35CoesiteSiO2
4.DA.40StishoviteSiO2
4.DA.45KeatiteSiO2
4.DA.50SeifertiteSiO2
7.8.2CoesiteSiO2
7.8.3TridymiteSiO2
7.8.4StishoviteSiO2
7.8.5CristobaliteSiO2
7.8.6LechatelieriteSiO2
7.8.7Silhydrite3SiO2 · H2O
7.8.8OpalSiO2 · nH2O
7.8.9MogániteSiO2

Other Names for Quartz

Name in Other Languages:
Arabic:مرو
Bosnian (Latin Script):Kvarc
Bulgarian:Кварц
Catalan:Quars
Croatian:Kvarc
Czech:Křemen
Danish:Kvarts
Dutch:Kwarts
Esperanto:Kvarco
Estonian:Kvarts
Finnish:Kvartsi
French:Quartz
Galician:Cuarzo
Hebrew:קוורץ
Hungarian:Kvarc
Indonesian:Kuarsa
Irish Gaelic:Grian Cloch
Italian:Quarzo
Japanese:石英
水晶
Korean:석영
Latvian:Kvarcs
Lithuanian:Kvarcas
Luxembourgish:Quarz
Macedonian:Кварц
Malay:Kuarza
Norwegian (Bokmål):Kvarts
Persian:کوارتز
Polish:Kwarc
Portuguese:Quartzo
Romanian:Cuarţ
Russian:Кварц
Serbian (Cyrillic Script):Кварц
Simplified Chinese:石英
水晶
Slovak:Kremeň
Slovenian:Kamena strela
Spanish:Cuarzo
Swedish:Kvarts
Traditional Chinese:石英
Turkish:Kuvars
Ukrainian:Кварц
Vietnamese:Thạch anh

Abakusz-kö

Agate

Agate-Jasper

Agatized coral

Amarillo Stone

Amberine

Amethyst

Ametrine

Apricotine

Arkansas Candle

Aventurine

Azurchalcedony

Babel-Quartz

Ball Jasper

Basanite

Bayate

Beekite

Binghamite

Bloodstone

Blue Chalcedony

Blue Lace Agate

Blue Quartz

Botswana Agate

Brazilian Pebble

Brecciated Agate

Bristol Diamonds

Buhrstone

Bull Quartz

Burnt amethyst

Cactus Quartz

Cape May Diamonds

Capped Quartz

Carnelian

Chalcedony

Chrome-Chalcedony

Chrysojasper

Citrine

Clear Lake Diamonds

Cloud Agate

Cotterite

Crazy Lace Agate

Creolite

Cubosilicite

Dallasite

Damsonite

Darlingite

Dendritic Agate

Diackethyst

Dragonite

Egyptian Jasper

Eisenkiesel

El Doradoite

Enhydro Agate

Eye Agate

Fairburn Agate

Fensterquarz

Ferruginous Quartz

Fire Agate

Fortification Agate

Fossil Agate

Gwindel

Haema-ovoid-agates

Hair Amethyst

Haytorite

Hedgehog Stone

Herbeckite

Herkimer Diamond

Herradura Diamonds

Iris Agate

Iris Quartz

Irnimite

Jacinto de Compostela Quartz

Jasper

Keystonite Chalcedony

Kinradite

Laguna Agate

Lake County Diamonds

Lake Superior Agate

Landscape Agate

Lithium Quartz

Marmaroscher Diamanten

Mexican Lace Agate

Milky Quartz

Mocha Stone

Moss Agate

Mutzschen Diamonds

Myrickite

Nipomo Agate

Oil Quartz

Onyx

Owyhee Jasper

Pastelite

Pietersite

Pigeon Blood Agate

Plasma

Plume Agate

Prase

Prase-malachite

Prasiolite

Pseudocubic Quartz

Quartzine

Quetzalitztli

Riband Agate

Riband Jasper

Rock Crystal

Rose Quartz

Rutilated Quartz

Sagenite (of Kunz)

Sard

Sardonyx

Sceptre Quartz

Schaumburger Diamant

Schwimmstein

Seftonite

Shocked Quartz

Smoky Quartz

Snakeskin Agate

Star Quartz

Suttroper Quarz

Vallum Diamond

Vogelaugenachat

Vogelaugenjaspis

Watercolour jasper

Wilkite

Youngite

Öhrli-Diamanten

Other Information

Electrical:
piezoelectric, pyroelectric, may be triboluminescent.
Thermal Behaviour:
Transforms to beta-quartz at 573 deg C and 1 bar (100 kPa) pressure.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Industrial Uses:
Ore for silicon, glassmaking, frequency standards, optical instruments, silica source for concrete setting, filtering agents as sand. Major component of sand.

References for Quartz

Reference List:
Tomkeieff, Sergei Ivanovitch (1941) Origin of the Name 'Quartz, Mineralogical Magazine, v. 26, p. 172-178.
Frondel, Clifford (1962), Dana's System of Mineralogy, 7th Edition: Vol. III.Reviews in Mineralogy vol 29 Silica: Physical behaviour, geochemistry and materials applications; P.J. Heany and G.V. Gibbs ed. Mineralogical Society of America, 1994, 606pp.
Kushiro, I. (1969), The system forsterite-diopside-silica with and without water at high pressures: American Journal of Science: 267: 269-294.
Rice, S.J. (1969) Quartz family minerals. California Division of Mines and Geology Mineral Information Service: 22: 35-38.
Feigl, F.J. and Anderson, J.H. (1970) Defects in crystalline quartz: electron paramagnetic resonance of E' vacancy centers associated with germanium impurities. Journal of Physics and Chemistry of Solids: 31: 575-596.
Sprunt, E.S. (1981) Causes of quartz cathodoluminescence colours. Scan. Elec. Micros.: 525-535.
Bohlen, S.R. and Boettcher, A.L. (1982) The quartz-coesite transformation: a precise determination and the effects of other components. Journal of Geophysical Research: 87(B8): 7073-7078.
Richet, P., Bottinga, Y., Deniélou, L., Petitet, J.P., and Téqui, C. (1982) Thermodynamic properties of quartz, cristobalite, and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochimica et Cosmochmica Acta: 46: 2639-2658.
Serebrennikov, A.J., Valter, A.A., Mashkovtsev, R.I., and Scherbakova, M.Ya. (1982) The investigation of defects in shock-metamorphosed quartz. Physics and Chemistry of Minerals: 8: 155-157.
Scandale, E., Stasi, F., and Zarka, A. (1983) Growth defects in a Quartz Druse. ac Dislocations. Journal of Applied Crystallography: 16: 39-403.
Weil, J.A. (1984) A review of electron spin resonance and its applications to the study of paramagnetic defects in crystalline quartz. Physics and Chemistry of Minerals: 10: 149-165.
Scandale, E. and Stasi, F. (1985) Growth defects in Quartz Druses. a Pseudo-basal Dislocations. Journal of Applied Crystallography: 18: 275-278.
Graziani, G., Lucchesi, S., and Scandale, E. (1988) Growth defects and genetic medium of a quartz druse from Traversella,Italy. Neues Jahrbuch für Mineralogie, Abhandlungen: 159: 165-179.
Owen, M.R. (1988) Radiation-damage halos in quartz. Geology: 16: 529-532.
Ramseyer, K., Baumann, J., Matter, A., and Mullis, J. (1988) Cathodoluminescence colours of α-quartz. Mineralogical Magazine: 52: 669-677.
Scandale, E., Stasi, F., Lucchesi, S., and Graziani, G. (1989) Growth marks and genetic conditions in a quartz druse. Neues Jahrbuch für Mineralogie, Abhandlungen: 160: 181-192.
Heaney, P.J., Veblen, D.R. (1991) Observations of the alpha-beta phase transition in quartz: A review of imaging and diffraction studies and some new results. American Mineralogist: 76: 1018-1032.
Agrosì, G., Lattanzi, P., Ruggieri, G., and Scandale, E. (1992) Growth history of a quartz crystal from growth marks and fluid inclusions data. Neues Jahrbuch für Mineralogie, Monatshefte: 7: 289-294.
Rink, W.J., Rendell, H., Marseglia, E.A., Luff, B.J., and Townsend, P.D. (1993) Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz. Physics and Chemistry of Minerals: 20: 353-361.
Berti G.(1994): Microcrystalline properties of quartz by means of XRPD measures. Adv. X-Ray Analysis: 37: 359-366.
Langenhorst, F. (1994): Shock experiments on pre-heated α- and β-quartz: II. X-ray and TEM investigations. Earth and Planetary Science Letters, 128, 683-698.
Onasch, C.M. and Vennemann, T.W. (1995) Disequilibrium partitioning of oxygen isotopes associated with sector zoning in quartz. Geology: 23: 1103-1106.
Rykart, R. (1995), Quarz-Monographie - Die Eigenheiten von Bergkristall, Rauchquarz, Amethyst, Chalcedon, Achat, Opal und anderen Varietäten. Stevens Kalceff, M.A. and Phillips, M.R. (1995) Cathodoluminescence microcharacterization of the defect structure of quartz. Physics Review: B 52: 3122-3134.
Plötze, M. and Wolf, D. (1996) EPR- und TL-Spektren von Quartz: Bestrahlungsabhängigkeit der [TiO4 -/Li +] 0-Zentren. Ber. Deutsch. Mineral. Gesellsch. 8: 217 (abstr.)
Gaines, Richard V., H. Catherine, W. Skinner, Eugene E. Foord, Brian Mason, Abraham Rosenzweig, Vandall T. King (1997), Dana's New Mineralogy : The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, 8th. edition: 1573.
Carpenter, M.A., Salje, E.K.H., Gaeme-Barber, A., Wruck, B., Dove, M.T., and Knight, K.S. (1998a), Calibration of excess thermodynamic properties and elastic constant variations associated with the α ↔ β phase transition in quartz. American Mineralogist: 83: 2-22.
Acta Crystallographica: B32: 2456-2459.
Götze, J., Plötze, M., Fuchs, H., and Habermann, D. (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz - a review. Mineralogy and Petrology: 71: 225-250.
Skála R., Hörz F. (2001): Unit-cell dimensions of experimentally shock-loaded quartz revisited. Meteoritics & Planetary Science, 36, 192-193.
Botis, S., Nokhrin, S.M., Pan, Y., Xu, Y., and Bonli, T. (2005) Natural radiation-induced damage in quartz. I. Correlations between cathodoluminescence colors and paramagnetic defects. Canadian Mineralogist: 43: 1565-1580.
Götze, J., Plötze, M., and Trautmann, T. (2005) Structure and luminescence characteristics of quartz from pegmatites. American Mineralogist: 90: 13-21.
Hebert LB, Rossman GR (2008) Greenish quartz found at the Thunder Bay Amethyst Mine Panorama, Thunder Bay, Ontario, Canada. Canadian Mineralogist, 46, 111-124.
Baur, W. H. (2009): In search of the crystal structure of low quartz. Zeitschrift für Kristallographie 224, 580-592.
Götze, J., Möckel, R., editors (2012) Quartz: Deposits, Mineralogy and Analytics. Springer-Verlag.
Ulrich Henn and Rainer Schultz-Guettler (2012): Review of come current coloured quartz varieties. Journal of Gemmology 33 (1-4), 29-43.

Internet Links for Quartz

Specimens:
The following Quartz specimens are currently listed for sale on minfind.com.

Localities for Quartz

map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2015, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: May 25, 2015 12:43:57 Page generated: May 25, 2015 03:52:56