Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Estherville meteorite, Emmet Co., Iowa, USAi
Regional Level Types
Estherville meteoriteMeteorite Fall Location
Emmet Co.County
IowaState
USACountry

This page is currently not sponsored. Click here to sponsor this page.
PhotosMapsSearch
Latitude & Longitude (WGS84):
43° 25' North , 94° 50' West
Latitude & Longitude (decimal):
Nearest Settlements:
PlacePopulationDistance
Estherville6,011 (2017)1.7km
Superior129 (2017)9.2km
Wallingford187 (2017)11.3km
Dunnell161 (2017)16.6km
Terril364 (2017)16.6km
Mindat Locality ID:
27777
Long-form identifier:
mindat:1:2:27777:5
GUID (UUID V4):
0c9686e0-a1bd-432c-b147-65911685c1fd


Mesosiderite-A3/4 (Stony-Iron)
Fall, 10 May 1879, 320 kg, shower with several 'stones'

Late in the afternoon a terribly loud explosion was heard from high above followed quickly by a number of additional thunderous blasts. Alerted by these sounds witnesses soon found a 4 m wide, 2 m deep crater with a 195 kg mass inside. Another large 65 kg mass and several smaller pieces were subsequently found in the next days and weeks. Estherville has been given considerable attention in the past 130+ years as it is the most massive of only 7 witnessed mesosiderite falls. Mesosiderites are complex stony-irons which have experienced dramatic impacts which have mixed once molten Fe-Ni metal with an assortment of silicate clasts. Several larger mesosiderite finds are known, but weathering creates substantive interpretation problems — especially when trying to determine which sulfides, sulfates and phosphates within an exposed meteoritical mass are pre-terrestrial and by products of exposure to the earth's environment. Estherville's Fe-Ni metal (56 wt%), with prominent nodules and frequent Widmanstätten patterns provide ample Fe-rich material for study. Likewise, Estherville's often clastic silicates (~40 wt%)— compositionally dominated by orthopyroxene with accessory plagioclase and other minor silicates — also provide ample 'stony' material for material. Schreibersite, troilite, chromite and other phases account for <5 wt% of the meteorite. Estherville is the 'Type Locality' for two minor phases, stanfieldite (a phosphate) and tetrataenite (Ni-rich tetragonal metal), discovered several decades ago.

As the research referenced here spans over a century, the reader should be alerted to changing nomenclature conventions used by various authors which are difficult to render with complete consistency. Thus, the 'whitlockite' reported here is referred to as 'merrillite' by other equally competent sources.

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Mineral List


17 valid minerals. 2 (TL) - type locality of valid minerals.

Meteorite/Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Anorthite
Formula: Ca(Al2Si2O8)
Description: Present in anorthositic clasts.
Reference: Grady, M. M. , Pratesi, G. & Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge University Press: Cambridge, United Kingdom.
Anorthite var. Bytownite
Formula: (Ca,Na)[Al(Al,Si)Si2O8]
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290
'Antitaenite'
Formula: Fe3Ni
Reference: www.lpi.usra.edu/meetings/metsoc2002/pdf/5020.pdf.
'Apatite'
Formula: Ca5(PO4)3(Cl/F/OH)
Reference: Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)
Augite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Reference: Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)
Chromite
Formula: Fe2+Cr3+2O4
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages; Bunch, T. E. & Keil, K. (1970) Chromite and Ilmenite in non-chondritic meteorites. American Mineralogist 56 (1/2):146-157. (Jan/Feb 1971)
'Clinopyroxene Subgroup'
Description: Clinopyroxenes include at least one Ca-rich species (augite) and one Ca-rich species (pigeonite. [Cf. Powell (1971)]
Reference: Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. (1998). Non-chondritic meteorites from asteroidal bodies. In: Planetary Materials (Papike, J. J., Editor): Chapter 4, 195 pages. Mineralogical Society of America: Washington, DC, USA. (1998)
Enstatite
Formula: Mg2Si2O6
Description: Enstatite has both a general definition as magnesian Fe-Mg pyroxene (MgO mol%> FeO mol%) and as very Mg-rich pyroxene or even nearly pure Mg pyroxene [The latter usage is usually preferred in the meteoritical literature]. Almost all Estherville orthopyroxene contains a significant ferroan component.
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290
'Fayalite-Forsterite Series'
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290; Shepard, C. U. (1879). On the Estherville, Emmet County, Iowa meteorite of May 10, 1879.: American Journal of Arts and Science (3rd Series) 18:186-188.; Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971); Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. (1998). Non-chondritic meteorites from asteroidal bodies. In: Planetary Materials (Papike, J. J., Editor): Chapter 4, 195 pages. Mineralogical Society of America: Washington, DC, USA. (1998)
Ilmenite
Formula: Fe2+TiO3
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages; Bunch, T. E. & Keil, K. (1970) Chromite and Ilmenite in non-chondritic meteorites. American Mineralogist 56 (1/2):146-157. (Jan/Feb 1971); Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)
Iron
Formula: Fe
Reference: Geochimica et Cosmochimica Acta, Volume 54, Issue 11, November 1990, Pages 3197-3208; Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages; Shepard, C. U. (1879). On the Estherville, Emmet County, Iowa meteorite of May 10, 1879.: American Journal of Arts and Science (3rd Series) 18:186-188.
Iron var. Kamacite
Formula: (Fe,Ni)
Reference: Geochimica et Cosmochimica Acta, Volume 54, Issue 11, November 1990, Pages 3197-3208; Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages; Shepard, C. U. (1879). On the Estherville, Emmet County, Iowa meteorite of May 10, 1879.: American Journal of Arts and Science (3rd Series) 18:186-188.
Merrillite
Formula: Ca9NaMg(PO4)7
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290. [as whitlockite]
'Orthopyroxene Subgroup'
Description: Orthopyroxene(Fs29) [According to Powell (1971)] is mostly described as 'Hypersthene' in much of the meteoritical literature.
Reference: Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971); Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. (1998). Non-chondritic meteorites from asteroidal bodies. In: Planetary Materials (Papike, J. J., Editor): Chapter 4, 195 pages. Mineralogical Society of America: Washington, DC, USA. (1998)
Pigeonite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Reference: Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)
'Plagioclase'
Formula: (Na,Ca)[(Si,Al)AlSi2]O8
Description: Plagioclase grains are somewhat variable in composition, but are normally unzoned.
Reference: Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971); Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. (1998). Non-chondritic meteorites from asteroidal bodies. In: Planetary Materials (Papike, J. J., Editor): Chapter 4, 195 pages. Mineralogical Society of America: Washington, DC, USA. (1998)
'Pyroxene Group'
Formula: ADSi2O6
Description: Much of the pyroxene is intergrown with plagioclase
Reference: Shepard, C. U. (1879). On the Estherville, Emmet County, Iowa meteorite of May 10, 1879.: American Journal of Arts and Science (3rd Series) 18:186-188.
Rutile
Formula: TiO2
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages; Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)
Schreibersite
Formula: (Fe,Ni)3P
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages; Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)
Stanfieldite (TL)
Formula: Ca4Mg5(PO4)6
Type Locality:
Reference: Fuchs, L.H. (1967) Stanfieldite, a new phosphate mineral from stony iron meteorites. Science: 158: 910-911.; Fleischer, M. (1968) New mineral names. American Mineralogist: 53: 507-511 (508).; Witzke, T. (2011): Stanfieldit-Kristalle aus dem Meteoriten Estherville (Mesosiderit A 3/4). Aufschluss 62, 119-123. ; Fuchs, L.H. (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist: 9: 289-290.
Taenite
Formula: (Fe,Ni)
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages
Tetrataenite (TL)
Formula: FeNi
Type Locality:
Reference: American Mineralogist, Volume 65, pages 624-630 1980
Tridymite
Formula: SiO2
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290; Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971); Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. (1998). Non-chondritic meteorites from asteroidal bodies. In: Planetary Materials (Papike, J. J., Editor): Chapter 4, 195 pages. Mineralogical Society of America: Washington, DC, USA. (1998)
Troilite
Formula: FeS
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages; Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)
Whitlockite ?
Formula: Ca9Mg(PO4)6(PO3OH)
Description: Later recognised as merrillite.
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290.
Zircon
Formula: Zr(SiO4)
Reference: Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
'Antitaenite'1.AE.10Fe3Ni
Iron1.AE.05Fe
var. Kamacite1.AE.05(Fe,Ni)
Schreibersite1.BD.05(Fe,Ni)3P
Taenite1.AE.10(Fe,Ni)
Tetrataenite (TL)1.AE.10FeNi
Group 2 - Sulphides and Sulfosalts
Troilite2.CC.10FeS
Group 4 - Oxides and Hydroxides
Chromite4.BB.05Fe2+Cr3+2O4
Ilmenite4.CB.05Fe2+TiO3
Rutile4.DB.05TiO2
Tridymite4.DA.10SiO2
Group 8 - Phosphates, Arsenates and Vanadates
Merrillite8.AC.45Ca9NaMg(PO4)7
Stanfieldite (TL)8.AC.70Ca4Mg5(PO4)6
Whitlockite ?8.AC.45Ca9Mg(PO4)6(PO3OH)
Group 9 - Silicates
Anorthite9.FA.35Ca(Al2Si2O8)
var. Bytownite9.FA.35(Ca,Na)[Al(Al,Si)Si2O8]
Augite9.DA.15(CaxMgyFez)(Mgy1Fez1)Si2O6
Enstatite9.DA.05Mg2Si2O6
Pigeonite9.DA.10(CaxMgyFez)(Mgy1Fez1)Si2O6
Zircon9.AD.30Zr(SiO4)
Unclassified Minerals, Rocks, etc.
'Apatite'-Ca5(PO4)3(Cl/F/OH)
'Clinopyroxene Subgroup'-
'Fayalite-Forsterite Series'-
'Orthopyroxene Subgroup'-
'Plagioclase'-(Na,Ca)[(Si,Al)AlSi2]O8
'Pyroxene Group'-ADSi2O6

List of minerals for each chemical element

HHydrogen
H ApatiteCa5(PO4)3(Cl/F/OH)
H WhitlockiteCa9Mg(PO4)6(PO3OH)
OOxygen
O StanfielditeCa4Mg5(PO4)6
O EnstatiteMg2Si2O6
O Anorthite var. Bytownite(Ca,Na)[Al(Al,Si)Si2O8]
O TridymiteSiO2
O IlmeniteFe2+TiO3
O ChromiteFe2+Cr23+O4
O RutileTiO2
O Pyroxene GroupADSi2O6
O ZirconZr(SiO4)
O Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
O Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
O ApatiteCa5(PO4)3(Cl/F/OH)
O Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
O AnorthiteCa(Al2Si2O8)
O MerrilliteCa9NaMg(PO4)7
O WhitlockiteCa9Mg(PO4)6(PO3OH)
FFluorine
F ApatiteCa5(PO4)3(Cl/F/OH)
NaSodium
Na Anorthite var. Bytownite(Ca,Na)[Al(Al,Si)Si2O8]
Na Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Na MerrilliteCa9NaMg(PO4)7
MgMagnesium
Mg StanfielditeCa4Mg5(PO4)6
Mg EnstatiteMg2Si2O6
Mg Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Mg Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Mg MerrilliteCa9NaMg(PO4)7
Mg WhitlockiteCa9Mg(PO4)6(PO3OH)
AlAluminium
Al Anorthite var. Bytownite(Ca,Na)[Al(Al,Si)Si2O8]
Al Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Al AnorthiteCa(Al2Si2O8)
SiSilicon
Si EnstatiteMg2Si2O6
Si Anorthite var. Bytownite(Ca,Na)[Al(Al,Si)Si2O8]
Si TridymiteSiO2
Si Pyroxene GroupADSi2O6
Si ZirconZr(SiO4)
Si Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Si Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Si Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Si AnorthiteCa(Al2Si2O8)
PPhosphorus
P StanfielditeCa4Mg5(PO4)6
P Schreibersite(Fe,Ni)3P
P ApatiteCa5(PO4)3(Cl/F/OH)
P MerrilliteCa9NaMg(PO4)7
P WhitlockiteCa9Mg(PO4)6(PO3OH)
SSulfur
S TroiliteFeS
ClChlorine
Cl ApatiteCa5(PO4)3(Cl/F/OH)
CaCalcium
Ca StanfielditeCa4Mg5(PO4)6
Ca Anorthite var. Bytownite(Ca,Na)[Al(Al,Si)Si2O8]
Ca Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Ca Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Ca ApatiteCa5(PO4)3(Cl/F/OH)
Ca Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Ca AnorthiteCa(Al2Si2O8)
Ca MerrilliteCa9NaMg(PO4)7
Ca WhitlockiteCa9Mg(PO4)6(PO3OH)
TiTitanium
Ti IlmeniteFe2+TiO3
Ti RutileTiO2
CrChromium
Cr ChromiteFe2+Cr23+O4
FeIron
Fe TetrataeniteFeNi
Fe Iron var. Kamacite(Fe,Ni)
Fe AntitaeniteFe3Ni
Fe IlmeniteFe2+TiO3
Fe ChromiteFe2+Cr23+O4
Fe TroiliteFeS
Fe Schreibersite(Fe,Ni)3P
Fe Taenite(Fe,Ni)
Fe Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Fe Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Fe IronFe
NiNickel
Ni TetrataeniteFeNi
Ni Iron var. Kamacite(Fe,Ni)
Ni AntitaeniteFe3Ni
Ni Schreibersite(Fe,Ni)3P
Ni Taenite(Fe,Ni)
ZrZirconium
Zr ZirconZr(SiO4)

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Peckham, S. F. (1879). Fall of a meteorite on the 10th of May, in Iowa: American Journal of Arts and Science (3rd Series) 18:77-78
Shepard, C. U. (1879). On the Estherville, Emmet County, Iowa meteorite of May 10, 1879.: American Journal of Arts and Science (3rd Series) 18:186-188.
Bunch, T. E. & Keil, K. (1970) Chromite and Ilmenite in non-chondritic meteorites. American Mineralogist 56 (1/2):146-157. (Jan/Feb 1971)
Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)
Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. (1998). Non-chondritic meteorites from asteroidal bodies. In: Planetary Materials (Papike, J. J., Editor): Chapter 4, 195 pages. Mineralogical Society of America: Washington, DC, USA. (1998)
Witzke, T. (2011): Stanfieldit-Kristalle aus dem Meteoriten Estherville (Mesosiderit A 3/4). Aufschluss 62, 119-123.
Grady, M. M. , Pratesi, G. & Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge University Press: Cambridge, United Kingdom. 373 pages.

External Links


Other Regions, Features and Areas containing this locality


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: May 11, 2024 15:41:00 Page updated: June 5, 2023 21:16:42
Go to top of page