Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Cassiterite dike exogreisen deposit, Lost River Mine, Lost River Valley, Port Clarence Mining District, Nome Census Area, Alaska, USAi
Regional Level Types
Cassiterite dike exogreisen depositMine
Lost River MineMine
Lost River ValleyBasin
Port Clarence Mining DistrictMining District
Nome Census AreaCensus Area
AlaskaState
USACountry

This page is currently not sponsored. Click here to sponsor this page.
PhotosMapsSearch
Latitude & Longitude (WGS84):
65° 28' 32'' North , 167° 9' 10'' West
Latitude & Longitude (decimal):
Type:
KΓΆppen climate type:
Mindat Locality ID:
198600
Long-form identifier:
mindat:1:2:198600:9
GUID (UUID V4):
65414a7c-606c-4f3c-a552-33bb9bff047d


Location: Lost River Mine is located on Cassiterite Creek, one mile upstream of its confluence with Lost River. This confluence is 5 miles upstream from the mouth of Lost River on the Bering Sea. The Lost River Mine area includes the Cassiterite dike exogreisen deposit (TE048), the Lost River Mine skarn deposit (TE049), the Lost River Mine endogreisen deposit (TE050), and the Ida Bell dike exogreisen deposit (TE051). The Cassiterite dike exogreisen deposit crosses Cassiterite Creek about 0.9 miles upstream from its mouth (elevation approximately 300 feet). The principal surface workings in the Lost River Mine area are on the Cassiterite dike east of Cassiterite Creek between elevations of 300 and 600 feet. This is locality 8 of Cobb and Sainsbury (1972). References for this locality were summarized under the name 'Lost River' by Cobb (1975).
Geology: The pre-mineral Cassiterite dike crosscuts Ordovician limestone and dolomite above a buried and mineralized granite cupola. The dike strikes northwest, dips moderately south, and extends at depth into parts of the Lost River skarn deposit. It ranges in thickness between 3 and 21 feet but in areas of previous stoping, widths of 5 to 10 feet are common (Sainsbury, 1964, plate 10). It is extensively altered over 2,200 feet of strike in the mine area. The dike was probably emplaced along a fault and some post mineralization displacement on this structure has occurred (Sainsbury, 1964, p. 10). Originally a leucocratic and porphyritic felsic rock, the dike is extensively replaced by quartz-topaz-fluorite greisen with disseminated cassiterite and sulfide minerals such as stannite, arsenopyrite, pyrite, galena, chalcopyrite, and sphalerite. Sulfide-rich veinlets containing cassiterite crosscut the greisen in many places. Wolframite is present in greater amounts in deeper parts of the mineralized dike where its mode of occurrence is similar to that of cassiterite, including its presence in crosscutting sulfide-bearing veins. Overprinting clay (kaolinite) alteration is common throughout the deposit. This alteration can completely obliterate preexisting textures and mineralogy, leaving only cassiterite grains in a clay matrix. Sainsbury (1964, p. 36) emphasizes that the clay alteration was superimposed on previously mineralized rock and that it did not affect tin distribution. Mining operations in the 1950's produced 309 tons of tin from 51,000 tons of ore averaging 1.13% tin (Lorain and others, 1958). Tungsten was not recovered during these operations. Some parts of the deposit were of higher grade; distinct ore shoots with greater than 2% tin were present (Hudson and Reed, 1997, p. 458). The higher grade tungsten zones contained 0.8% WO3. Sainsbury (1964, p. 50) has calculated reserves for two types of ore; 200,500 tons grading 1.3% tin and 0.125% WO3 and 105,000 tons grading 0.76% tin and 0.6% WO3. Sainsbury (1964, p. 51) suggests that the known and inferred ore with greater than 1% combined tin and WO3 could be about 430,000 tons. The deposit is open to the southeast and potential exists to the west on the other side of Cassiterite Creek.
Workings: In addition to many surface trenches, significant underground workings exist at the Lost River Mine. Most of these are on the Cassiterite dike but some deeper exploratory drifts encountered the buried Lost River granite cupola. The underground workings include adits, drifts, declines, raises, and shafts that total several thousand feet in length (Sainsbury, 1964, plate 10). These workings are developed on five levels with over 500 feet of vertical extent and with individual drifts being up to 1,100 feet long. Many diamond drill holes have been completed from both the surface and underground.
Age: The age of the mineralization is assumed to be related to the development of tin systems in the Lost River area and therefore Late Cretaceous, the age of the tin-mineralizing granites there (Hudson and Arth, 1983). Fine-grained, leucocratic granite collected from a Lost River Mine dump has been dated at 80.2 +/- 2.9 my (Hudson and Arth, 1983, p.769).
Alteration: Greisen has extensively replaced the felsic Cassiterite dike over 2,200 feet of strike and several hundred feet of dip. Later kaolinite replacement has overprinted much of the greisen.
Production: Lode production from the Lost River Mine is all from the Cassiterite dike exogreisen. Production includes 5.6 tons of concentrate containing 3.5 tons of tin and 0.6 tons of tungsten in 1913 and 309 tons of tin in concentrate produced between 1952 and 1955 (Lorain and others, 1958, p. 7).
Reserves: Sainsbury (1964, p. 50) has calculated reserves for two types of ore; 200,500 tons grading 1.3% tin and 0.125% WO3 and 105,000 tons grading 0.76% tin and 0.6% WO3. Sainsbury (1964, p. 51) suggests that the known and inferred ore with greater than 1% combined tin and WO3 could be about 430,000 tons. The deposit is open to the southeast and potential exists to the west on the other side of Cassiterite Creek.

Commodities (Major) - Sn, W
Development Status: Yes
Deposit Model: Exogriesen. This deposit has characteristics of both tin vein model (15b) and

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded at this locality.


Mineral List


9 valid minerals.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

β“˜ Cassiterite
Formula: SnO2
β“˜ Chalcopyrite
Formula: CuFeS2
β“˜ Fluorite
Formula: CaF2
β“˜ Galena
Formula: PbS
β“˜ Kaolinite
Formula: Al2(Si2O5)(OH)4
β“˜ Muscovite
Formula: KAl2(AlSi3O10)(OH)2
β“˜ Muscovite var. Sericite
Formula: KAl2(AlSi3O10)(OH)2
β“˜ Sphalerite
Formula: ZnS
β“˜ Stannite
Formula: Cu2FeSnS4
β“˜ Topaz
Formula: Al2(SiO4)(F,OH)2
β“˜ 'Tourmaline'
Formula: AD3G6 (T6O18)(BO3)3X3Z
β“˜ 'Wolframite Group'

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 2 - Sulphides and Sulfosalts
β“˜Sphalerite2.CB.05aZnS
β“˜Chalcopyrite2.CB.10aCuFeS2
β“˜Stannite2.CB.15aCu2FeSnS4
β“˜Galena2.CD.10PbS
Group 3 - Halides
β“˜Fluorite3.AB.25CaF2
Group 4 - Oxides and Hydroxides
β“˜Cassiterite4.DB.05SnO2
β“˜'Wolframite Group'4.DB.30 va
Group 9 - Silicates
β“˜Topaz9.AF.35Al2(SiO4)(F,OH)2
β“˜Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
β“˜var. Sericite9.EC.15KAl2(AlSi3O10)(OH)2
β“˜Kaolinite9.ED.05Al2(Si2O5)(OH)4
Unclassified
β“˜'Tourmaline'-AD3G6 (T6O18)(BO3)3X3Z

List of minerals for each chemical element

HHydrogen
Hβ“˜ KaoliniteAl2(Si2O5)(OH)4
Hβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Hβ“˜ TopazAl2(SiO4)(F,OH)2
Hβ“˜ Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
BBoron
Bβ“˜ TourmalineAD3G6 (T6O18)(BO3)3X3Z
OOxygen
Oβ“˜ CassiteriteSnO2
Oβ“˜ KaoliniteAl2(Si2O5)(OH)4
Oβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Oβ“˜ TopazAl2(SiO4)(F,OH)2
Oβ“˜ TourmalineAD3G6 (T6O18)(BO3)3X3Z
Oβ“˜ Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
FFluorine
Fβ“˜ FluoriteCaF2
Fβ“˜ TopazAl2(SiO4)(F,OH)2
AlAluminium
Alβ“˜ KaoliniteAl2(Si2O5)(OH)4
Alβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Alβ“˜ TopazAl2(SiO4)(F,OH)2
Alβ“˜ Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
SiSilicon
Siβ“˜ KaoliniteAl2(Si2O5)(OH)4
Siβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Siβ“˜ TopazAl2(SiO4)(F,OH)2
Siβ“˜ Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
SSulfur
Sβ“˜ ChalcopyriteCuFeS2
Sβ“˜ GalenaPbS
Sβ“˜ SphaleriteZnS
Sβ“˜ StanniteCu2FeSnS4
KPotassium
Kβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Kβ“˜ Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
CaCalcium
Caβ“˜ FluoriteCaF2
FeIron
Feβ“˜ ChalcopyriteCuFeS2
Feβ“˜ StanniteCu2FeSnS4
CuCopper
Cuβ“˜ ChalcopyriteCuFeS2
Cuβ“˜ StanniteCu2FeSnS4
ZnZinc
Znβ“˜ SphaleriteZnS
SnTin
Snβ“˜ CassiteriteSnO2
Snβ“˜ StanniteCu2FeSnS4
PbLead
Pbβ“˜ GalenaPbS

Other Databases

Link to USGS - Alaska:TE048

Other Regions, Features and Areas containing this locality


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.

References

 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: May 9, 2024 14:41:17 Page updated: March 22, 2024 23:59:17
Go to top of page