Help|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery


This page kindly sponsored by Henry Minot
A = Ca, Na, K, or is vacant (large cations);

D = Al, Fe2+, Fe3+, Li, Mg2+, Mn2+ (intermediate to small cations - in valence balancing combinations when the A site is vacant);

G = Al, Cr3+, Fe3+, V3+ (small cations);

T = Si (and sometimes minor Al, B3+);

X = O and/or OH;

Z = F, O and/or OH.

Note: In the formulas of the group members, we have put the D site cations in parentheses in order to facilitate the assignment of the different cations to the crystallographic sites.
Reported by Christianus-Fridericus Garmann in 1707. The name "tourmali" was a generic name used in Ceylon [Sri Lanka] for colored gems, mostly zircons. About 1703, it had been discovered by Dutch lapidaries that some of the "zircons" arriving in the Netherlands were actually a previously undescribed mineral. Several names were given to the new mineral including "Pierre de Ceylan, by Lemery in 1717. Tourmalin, as a more or less specific mineral name, was used by Rinmann in 1766. Hill called it Tourmaline Garnet in 1771 and Richard Kirwan shortened the name to "Tourmaline" in 1794.
Tourmaline (synonymous with tourmaline group) comprises trigonal borosilicates of the cyclosilicate superclass. The nomenclature was recently revised (Henry et al., 2011).

Notes on the general formula:
- Additional G and D site cations are reported substituting in minor amounts for the principal cations of these sites.
- The X and Z sites are usually combined in the simplified formula for the Group as Z4.

The structure for the group is one in which SiO4 tetrahedra are linked into six-membered rings having a hexagonal pattern and are stacked up with intervening distorted triangular BO3 groups, linked by D site cations; the SiO4 tetrahedra are linked vertically by G site cations and X site anions, while the columns are linked horizontally by both D site cations and X site anions. The A site cations and the Z site anions occupy the channels down the centre of the columns (or the A site may be vacant). Tetrahedral boron ([4]B) may be present in addition in both natural and synthetic tourmalines (Kutzschbach et al., 2016).

Luinaite-(OH) represents a monoclinic (pseudo-rhombohedral) distorted variant (space group Cm) of the tourmaline structure. Unnamed triclinic variants have also been reported.

Color change, from deep-green to dark-red, with an increasing path length of light, occurring in Cr-bearing tourmalines, is known as the Usambara effect. Although similar to the alexandrite effect, the color change in this case is due to (1) spectral positions of the spin-allowed bands of absorption of Cr3+ ions, (2) specific ratio of the transmission of light in two windows of transparency (green and red), and (3) exponential dependence of the light transmittance on the sample thickness. Other than Cr chromofores, like Fe, supress the effect (Taran & Naumenko, 2016).

Visit for gemological information about Tourmaline.

Classification of Tourmaline

Physical Properties of Tourmaline

Hardness (Mohs):
Irregular/Uneven, Conchoidal
2.9 - 3.1 g/cm3 (Measured)    

Chemical Properties of Tourmaline


A = Ca, Na, K, or is vacant (large cations);

D = Al, Fe2+, Fe3+, Li, Mg2+, Mn2+ (intermediate to small cations - in valence balancing combinations when the A site is vacant);

G = Al, Cr3+, Fe3+, V3+ (small cations);

T = Si (and sometimes minor Al, B3+);

X = O and/or OH;

Z = F, O and/or OH.

Note: In the formulas of the group members, we have put the D site cations in parentheses in order to facilitate the assignment of the different cations to the crystallographic sites.

Crystallography of Tourmaline

Crystal System:

Crystallographic forms of Tourmaline

Crystal Atlas:
Image Loading
Click on an icon to view
Tourmaline no.4 - Goldschmidt (1913-1926)
Tourmaline no.309 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by

Edge Lines | Miller Indicies | Axes

Opaque | Translucent | Transparent

Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation
X-Ray Powder Diffraction:
Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.

Relationship of Tourmaline to other Species

Group Members:
Adachiite CaFe3Al6(Si5AlO18)(BO3)3(OH)3(OH)
Bosiite NaFe33+(Al4Mg2)(Si6O18)(BO3)3(OH)3O
Chromium-dravite Na(Mg3)Cr63+(Si6O18)(BO3)3(OH)3(OH)
Chromo-alumino-povondraite Na(Cr3)(Al4Mg2)(Si6O18)(BO3)3(OH)3O
Darrellhenryite Na(LiAl2)Al6(BO3)3Si6O18(OH)3O
Dravite Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Elbaite Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Feruvite Ca(Fe2+)3MgAl5(Si6O18)(BO3)3(OH)3(OH)
Fluor-buergerite Na(Fe33+)Al6(Si6O18)(BO3)3O3F
Fluor-dravite Na(Mg3)Al6(Si6O18)(BO3)3(OH)3F
Fluor-elbaite Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3F
Fluor-feruvite Ca(Fe2+)3MgAl5(Si6O18)(BO3)3(OH)3F
Fluor-liddicoatite Ca(Li2Al)Al6(Si6O18)(BO3)3(OH)3F
Fluor-schorl Na(Fe32+)Al6(Si6O18)(BO3)3(OH)3F
Fluor-tsilaisite Na(Mn2+)3Al6(Si6O18)(BO3)3(OH)3F
Fluor-uvite Ca(Mg3)MgAl5(Si6O18)(BO3)3(OH)3F
Foitite (□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
Liddicoatite Ca(Li2Al)Al6(Si6O18)(BO3)3(OH)3(OH)
Lucchesiite CaFe32+ Al6(Si6O18)(BO3)3(OH)3O
Luinaite-(OH) Na(Fe2+)3Al6(Si6O18)(BO3)3(OH)3(OH)
Magnesio-foitite (□,Na)(Mg2Al)Al6(Si6O18)(BO3)3(OH)3(OH)
Maruyamaite K(MgAl2)(Al5Mg)(BO3)3(Si6O18)(OH)3O
Olenite Na(Al3)Al6(Si6O18)(BO3)3O3(OH)
Oxy-chromium-dravite Na(Cr)3(Cr4Mg2)(Si6O18)(BO3)3(OH)3O
Oxy-dravite Na(MgAl2)MgAl5(Si6O18)(BO3)3(OH)3O
Oxy-foitite □(Fe2+Al2)Al6(Si6O18)(BO3)3(OH)3O
Oxy-rossmanite ☐(LiAl2)Al6(Si6O18)(BO3)3(OH)3O
Oxy-schorl Na(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3O
Oxy-uvite CaMg3Al6(Si6O18)(BO3)3(OH)3O
Oxy-vanadium-dravite Na(V)3(V4Mg2)Si6O18(BO3)3(OH)3O
Povondraite NaFe33+(Mg2Fe43+)(Si6O18)(BO3)3(OH)3O
Rossmanite ☐(LiAl2)Al6(Si6O18)(BO3)3(OH)3(OH)
Schorl Na(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Tsilaisite Na(Mn2+)3Al6(Si6O18)(BO3)3(OH)3(OH)
UM2000-64-SiO:BFeHKMg K, Mg, Fe, Si, B, O, H
Unnamed (Pb-dominant Tourmaline) (Pb,Na)(Li,Al)3Al6(Si6O18)(BO3)3(OH)3(F,OH)
Uvite Ca(Mg3)MgAl5(Si6O18)(BO3)3(OH)3(F/OH)
Vanadio-oxy-chromium-dravite Na(V)3(Cr4Mg2)(Si6O18)(BO3)3(OH)3O
Vanadio-oxy-dravite NaV3(Al4Mg2)(Si6O18)(BO3)3(OH)3O

Other Names for Tourmaline

Other Information

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Tourmaline in petrology

An essential component of (items highlighted in red)
Common component of (items highlighted in red)
Accessory component of (items highlighted in red)

References for Tourmaline

Reference List:
Kunitz, W. (1930): Die Mischungsreihen in der Turmalingruppe und die genetischen Beziehungen zwischen Turmalinen und Glimmern. Chemie der Erde 4, 208-251 (in German).

Buerger, M.J. and Parrish, W. (1937) The unit cell and space group of tourmaline. American Mineralogist: 22: 1139-1150.

Agafonova, T.N. (1949) Crystallographic study of tourmalines. Doklady Akademii Nauk SSSR Comptes Rendus: 65: 207-209.

Belov, N.V. and Belova, B.N. (1949) Crystal structure of tourmaline. Doklady Akademii Sci. USSR 69: 185.

Donnay, G. and Buerger, M.J. (1950) The determination of the crystal structure of tourmaline. Acta Crystallographica 3: 5-12.

Ito, T. and Sadanaga, R. (1951) Fourier analysis of the structure of tourmalines. Acta Crystallographica 4: 5-12.

Epprecht, W. (1953) Die Gitterkonstanten der Turmaline. Schweizerische mineralogische und petrographische Mitteilungen 33: 481-505.

Buerger, M.J., C.W. Burnham, and D.R. Peacor (1962) Assessment of the several structures proposed for tourmaline: Acta Crystallographica: 15: 583-590.

Gebert, W. & Zemann, J. (1965): Messung des Ultrarot-Pleochroismus von Mineralen. II. Der Pleochroismus der OH-Streckfrequenz in Turmalin. Neues Jahrb. Mineral. Monatsh. 1965, 232-235.

Manning, P.G. (1969) An optical absorption study of the origin of colour and pleochrism in pink and brown tourmalines: Canadian Mineralogist: 9: 678-690.

Donnay, G. & R. Barton (1972) Refinement of the crystal structure of elbaite and the mechanism of tourmaline solid solution: Mineral. Und Petr. Mitt.: 8: 273-286.

Belov, V.F., Khimich, T.A., Shpko, M.N. Voskresenskaya, I.E., and Okulov, B.N. (1973) Gamma-resonance investigations of ferruginous tourmaline. Soviet Physics and Crystallography: 18: 119-120.

Belov, V.F., Korvushkin, V.V., Belov, A.F., Korneev, B.V., and Zheludev, I.S. (1975) Nonequivalent positions of the iron ions and electronuclear interactions in tourmaline. Soviet Physics of the Solid State: 16: 1568.

Johnston, J.H. and Duncan, J.F. (1975) Manganese ion site distribution studies in tourmaline by anomalous X-ray scattering methods. Journal of Applied Crystallography: 8: 469-472.

Donnay, G. (1977) Structural mechanisms of pyroelectricity in tourmaline. Acta Crystallographica A, 33: 927-932.

Foit, F.F., Jr. and P.E. Rosenberg (1979), The structure of vanadium-bearing tourmaline and its implications regarding tourmaline solid solutions: American Mineralogist: 64: 788-798.

Afonina, G.G., Makagon, V.M., Bogdanova, L.A., and Vladykin, N.V. (1980) The unit cell parameters of tourmalines with different composition. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva: 109: 105-112.

Gorskaya, M.G., Frank-Kamenetskaya, O.V., Rozhdestvenskaya, I.V., and Frank-Kamenetskii, V.A. (1982) Refinement of the crystal structure of Al-rich elbaite, and some aspects of the crystal chemistry of tourmalines. Soviet Physics: Crystallography: 27: 63-66.

Manning, D.A.C. (1982) Chemical and morphological variation in tourmalines from the Hub Chapping batholith of peninsular Thailand. Mineralogical Magazine: 45: 139-147.

Gorskaya, M.G., Frank-Kamenetskaya, O.V., and Frank-Kamenetskii, V.A. ( ) Some problems of structural crystallochemistry of tourmalines. Crystal chemistry of minerals. Papers and Proceedings of the General Meeting International Mineralogical Association: 33: 532-540.

Dietrich, R. V. (1985): The tourmaline group. 1st ed., Van Nostrand Reinhold, New York, 300 pp.

Henry, D.J. and Guidotti, C.V. (1985) Tourmaline as a petrogenic indicator mneral: an example from the staurolite-grade metapelites of NW Maine. American Mineralogist: 70: 1-15.

Dietrich, R. V. (1986): The tourmaline group. Kluwer, xx pp.

Sesedko, T.A. and Mischenko, K.S. (1986) K voprosu rentgenovskoy diagnostiki turmalinov (X-ray diagnosis of tourmaline). Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva: 115(3): 369-377 (in Russian).

Mattson, S.M. and Rossman, G.R. (1987) Fe 2+ - Fe 3+ interactions in tourmaline. Physics and Chemistry of Minerals: 14: 163-171.

Foit, F.F., Jr. (1989), Crystal chemistry of alkali-deficient schorl and tourmaline structural relationships: American Mineralogist: 74: 422-431.

Afonina, G.G. and Makagon, V.M. (1990) Ordering of tourmaline and the distribution of cations by positions of Y and Z in its structure; according to X-ray powder patterns. Mineralogicheskiy Zhurnal, Kiev: 12(5): 19-25.

Benesch, F. (1990): Der Turmalin. Verlag Urachhaus, Stuttgart, Germany, 384 pp.

Kargal'tsev, S.V., Lebedev, A.S., and Fursenko, D.A. (1990) Relationship of intercation distances and unit cell dimensions of tourmaline. Soviet Geology and Geophysics: 31(8): 105-112.

Lebedev, AS., Kargal'tsev, S.V., Kuzmin, V.I., and Korovuslilcin, V.V. (1990) The effects of the crystallization conditions on the distribution of Al, e(Mg) in octahedron positions of tourmaline structures. Mineralogicheskiy Zhurnal, Kiev: 12(1): 24-33.

Sperlich, R. (1990) Zoning and crystal chemistry of tourmalines in prograde metamorphic sequence of the Central Alps, 51 p. PhD thesis, University of Basel, Switzerland.

Afonina, G.G. and Makagon, V.M. (1992) Unit cell parameters of tourmaline modifications at different degree of ordering. Russian Geology and Geophysics: 33: 53-57.

Henry, D.J. and Dutrow, B.L. (1992) Tourmaline in a low grade clastic metasedimentary rock: an example of the petrogenic potential of tourmaline. Contributions to Mineralogy and Petrology: 112: 203-218.

Grice, J.D. & T.S. Ercit (1993), Ordering of Fe and Mg in the tourmaline crystal structure: The correct formula: Neues Jahrb. Min. Ab.: 165: 245-266.

Hawthorne, F.C., MacDonald, D.J., and Burns, P.C. (1993) Reassignment of cation site-occupancies in tourmaline: Al-Mg disorder in the crystal structure of dravite. American Mineralogist: 78: 265-270.

London, D. & D.A.C. Manning (1995), Compositional variation and significance of tourmaline from SW England: Economic Geology.: 90: 495-519.

MacDonald, D.J. & F.C. Hawthorne (1995), The crystal chemistry of Si?Al substitution in tourmaline: Canadian Mineralogist: 33: 849-858.

Grew, E.S., and Anovitz, L.M. (1996) BORON: Mineralogy, Petrology and Geochemistry, second edition, as revised (2002).

Hawthorne, F.C. (1996), Structural mechanisms for light-element variations in tourmaline: Canadian Mineralogist: 34: 123-132.

Henry, D.J. and Dutrow, B.L. (1996) Metamorphic tourmaline and its petrologic applications. In E.S. Grew and L.M. Anovitz, Eds., Boron: Mineralogy, Petrology and Geochemistry: 33: 503-557. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia.

Michailidis, K., Kassoli-Fournaraki, A., and Dietrich, R.V. (1996) Origin of zoned tourmalines in graphite-rich metasedimentary rocks from Macedonia, northern Greece. European Journal of Mineralogy: 8: 393-404.

Smith, M.P., Yardley, B.W.D. (1996) The boron isotopic composition of tourmaline as a guide to fluid processes in the southwestern England orefield: An ion microprobe study. Geochimica et Cosmochimica Acta: 60: 1415-1427.

Sperlich, R., Giere, R., and Frey, M. (1996) Evolution of compositional polarity and zoning in tourmaline during prograde metamorphism of sedimentary rocks in the Swiss Central Alps. American Mineralogist: 81: 1223-1236.

Povondra, P., Vrána, S. (1996) Tourmaline and associated minerals in alkali-feldspar orthogenesis near Hluboke nad Vltavou, southern Bohemia. Journal of the Czech Geological Society: 41: 191-200.

Sperlich, R., Giere, R., and Frey, M. (1996) Evolution of compositional polarity and zoning in tourmaline during prograde metamorphism of sedimentary rocks in the Swiss Central Alps. American Mineralogist: 81: 1222-1236.

Chaussidon, M. and Appel, P.W.U. (1997) Boron isotopic composition of tourmalines from the 3.8 Ga-old Isua supracrustals, West Greenland: implications on the ?11B value of early Archean seawater. Chem. Geol.: 136: 171-180.

Gashrova, B., Mihailova, B., Konstantinov, L. (1997): Raman spectra of various types of tourmaline. European Journal of Mineralogy, 9, 935-940.

Jiang, S., Palmer, M.R., Peng, Q., Yang, J. (1997) Chemical and stable isotope compositions of Proterozoic metamorphosed evaporites and associated tourmalines from the Houxianyu borate deposit, eastern Lianoning, Cina. Chem. Geol.: 135: 189-211.

Wolf, M.B. and London, D. (1997) Boron in granitic magmas: stability of tourmaline in equilibrium with biotite and cordierite. Contributions to Mineralogy and Petrology: 130: 12-30.

Dyar, M.D., M.E. Taylor, T.M. Lutz, C.A. Francis, C.V. Guidotti, & M. Wise (1998), Inclusive chemical characterization of tourmaline: Mössbauer study of Fe valence and site occupancy: American Mineralogist: 83: 848-864.

Jiang, S. (1998) Stable and radiogenic isotope studies of tourmaline: Overview. Journal of the Czech Geological Society: 43: 75-90.

Novák, M., Selway, J.B., and Houzar, S. (1998) Potassium-bearing, fluorine-rich tourmaline from metamorphosed fluorite layer in leucocratic orthogneiss at Nedvidice, Svratka Unit, western Moravia. Journal of the Czech Geological Society: 43: 37-44.

Dutrow, B.L., Foster, C.T., and Henry, D.J. (1999) Tourmaline-rich pseudomorphs in sillimanite zone metapelites: Demarcation of an infiltration front. American Mineralogist: 84: 794-805.

Dyar, M.D., Guidotti, C.V., Core, D.P., Wearn, K.M., Wise, M.A., Francis, C.A., Johnson, K., Brady, J.B., Robertson, J.D., and Cross, L.R. (1999) Stable isotope and crystal chemistry of tourmaline across pegmatite-country rocks boundaries at Black Mountain and Mount Mica, southwestern Maine, USA. European Journal of Mineralogy: 11: 281-294.

Hawthorne, F.C. & D.J. Henry (1999), Classification of the minerals of the tourmaline group: European Journal of Mineralogy: 11: 201-215.

Henry, D.J., Kirkland, B.L., and Kirkland, D.W. (1999) Sector-zoned tourmaline from the cap rock of a salt dome. European Journal of Mineralogy: 11: 263-280.

Keller, P., Roda Robles, E., Pesquera Perez, A., and Fontan, F. (1999) Chemistry, paragenesis and significance of tourmaline in pegmatites of the Southern Tin Belt, central Namibia. Chemical Geology: 158: 203-225.

Pieczka, A. (1999) Statistical interpretation of structural parameters of tourmalines: the ordering of ions in the octahedral sites. European Journal of Mineralogy: 11: 243-251.

Pieczka, A. (1999) Modeling of some structural parameters of tourmalines on the basis of their chemical composition: 1. The ordered structural model. 2nd. European Workshop on Tourmaline and Borosilicates Abstracts.

Tagg, S.L., Ch, H., Dyar, M.D., and Grew, E.S. (1999) Tetrahedral boron in naturally occurring tourmaline. American Mineralogist: 84: 1451-1455.

Velickov, B. and Abs-Wurmbach, I. (1999) Some considerations to mechanism of proton-deficiency in tourmalines. 2nd. European Workshop on Tourmaline and Borosilicates Abstracts.

von Goerne, G., Franz, G., and Robert, J.-L. (1999) Upper thermal stability of tourmaline + quartz in the system MgO-Al2O3-SiO2-B2O3-H2O and Na2O-MgO-Al2O3-SiO2-B2O3-H2O-HCl in hydrothermal solutions and siliceous melts. Canadian Mineralogist: 37: 1025-1040.

Dutrow, B. and Henry, D.J. (2000) Complexly zoned fibrous tourmaline: A record of evolving magmatic and hydrothermal fluids. Canadian Mineralogist: 38: 131-143.

Pieczka, A. (2000) Modeling of some structural parameters of tourmalines on the basis of their chemical composition: 1. The ordered structural model. European Journal of Mineralogy: 12: 589-596.

Clark, C.M. and Hawthorne, F.C. (2001) Bonding character of triangular boron in tourmaline. Goldschmidt Conference, 11, 3015.pdf.

Ertl, A., J.M. Hughes, & B. Marler (2001), Empirical formulae for the calculation of [T-O] and X-O2 bond lengths in tourmaline and relations to tetrahedrally-coordinated boron: Neues Jahrb. Mineral. Monats.: 12: 548-557.

Ertl, A., Pertlik, F., and Bernhardt, H.-J. (2001b) Ein hell-blauer Olenit-Schörl-Dravit Mischkristall von Ebersdorf, Niederösterreich: Strukturanalyse und Chemie. Mitt. Österr. Mineral. Ges.: 146: 75-77.

Fritz, E. (2001), The compatablity of manganese +II in tourmaline, 93 p., Unpub. M.S. Thesis, Univ. of Oklahoma.

Henry, D.J. and Dutrow, B.L. (2001) Compositional zoning and element partitioning in nickeloan tourmaline from a metamorphosed karstbauxite from Samos, Greece. American Mineralogist: 80: 1130-1142.

Hughes, K.-A., Hughes, J.M., and Dyar, M.D. (2001) Chemical and structural evidence for [4]B-[4]Si substitution in natural tourmalines. European Journal of Mineralogy: 13: 743-747.

Kawakami, T. (2001) Boron depletion controlled by the breakdown of tourmaline in the migmatite zone of the Aoyama area, Ryoke metamorphic belt, southwestern Japan. Canadian Mineralogist: 39: 1529-1546.

Kawakami, T. (2001) Tourmaline breakdown in the migmatite zone of the Ryoke metamorphic belt, Japan. Jour. Met.Geol.: 19: 61-75.

Nakano, T. and Nakamura, E. (2001) Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite. Physics of the Earth and Planetary Interiors: 127: 233-252.

Camara, F., Ottolini, L. and Hawthorne, F.C. (2002) Crystal chemistry of three tourmalines by SREF, EMPA, and SMS. American Mineralogist: 87: 1437-1442.

Deksissa, D.J. and Koeberl, C. (2002) Geochemistry and petrography of gold-quartz-tourmaline veins of the Okote area, southern Ethiopia: implications for gold exploration. Mineralogy and Petrology: 75: 101-122.

Ertle, A., J.M. Hughes, F. Pertlik, F.F. Foit, Jr., S.E. Wright, F. Brandstätter, & B. Marler (2002), Polyhedron distortions in tourmaline: Canadian Mineralogist: 40: 153-162.

Hawthorne, F.C. (2002), Bond-valence constraints on the chemical composition of tourmaline: Canadian Mineralogist: 40: 789-797.

Tindle, A.G., Breaks, F.W., and Selway, J.B. (2002) Tourmaline in petalite-subtype gramitic pegmatites: evidence of
fractionation and contamination from Pakeagama Lake and Separation Lake areas of northwestern Ontario, Canada. Canadian Mineralogist: 40: 753-788.

Bebout, G.E. and Nakamura, E. (2003) Record in metamorphic tourmalines of subduction-zone devolatilization and boron cycling. Geology: 31: 407-410.

Cempírek, J. and Novák, M. (2003) Mineral assemblages and chemical composition of Al-rich tourmaline from abyssal pegmatites of the Bohemian Massif. In: LERM 2003, International Symposium on Light Elements in Rock-Forming Minerals (Nové M?sto na Morav?), 12-13. (abstract).

Ertle, A., J.M. Hughes, S. Prowatke, G.R. Rossman, D. London, & E.A. Fritz (2003b), Mn-rich tourmaline from Austria: Structure, chemistry, optical spectra, & relations to synthetic solid solutions: American Mineralogist: 88: 1369-1376.

Rustemeyer, P. (2003): Faszination Turmalin. Spektrum Akad. Verlag, Heidelberg, Germany, 320 pp.

Torres-Ruiz, J., Pesquera, A., Gil-Crespo, P.P., and Velilla, N. (2003) Origin and petrogenetic implications of tourmaline-rich rocks in the Sierra Nevada (Betic Cordillera, southeastern Spain). Chemical Geology: 197: 55-86.

Novák, M., Povondra, P., and Selway, J.B. (2004) Schorl - oxy-schorl to dravite - oxy-dravite tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech Republic. European Journal of Mineralogy: 16: 323-333.

Bosi, F., Agrosì, G., Lucchesi, S., Melchiorre, G., and Scandale, E. (2005) Mn-tourmaline from island of Elba (Italy). Crystal chemistry. American Mineralogist: 90: 1661-1668.

Agrosì, G., Bosi, F., Lucchesi, S., Melchiorre, G., and Scandale, E. (2006) Mn-tourmaline crystals from island of Elba (Italy): Growth history and growth marks. American Mineralogist: 91: 944-952.

van Hinsberg, V.J., Schumacher, J.C.,Kearns, S., Mason, P.R.D., and Franz, G. (2006) Hourglass sector zoning in metamorphic tourmaline and resultant major and trace-element fractionation. American Mineralogist: 91: 717-728.

da Fonseca-Zang, W.A., Zang, J.W., Hofmeister, W. (2008): The Ti-influence on the tourmaline colour. J. Brazil Chem. Soc. 19, 1186-1192.

Ertl, A., Marschall, H.R., Giester, G., Henry, D.J., Schertl, H.-P., Ntaflos, T., Luvizotto, G.L., Nasdala, L. & Tillmanns, E. (2010): Metamorphic ultra high-pressure tourmalines: Structure, chemistry, and correlations to PT conditions. Am. Mineral., 95, 1-10.

Henry, D.J. & Dutrow, B.L. (2011): Incorporation of fluorine in tourmaline: internal crystallographic or external environmental influences? Canadian Mineralogist, 49, 41-56.

Henry, D., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P. & Pezzotta, F. (2011): Nomenclature of the tourmaline supergroup minerals. Am. Mineral., 96, 895-913.

Setkova, T., Shapovalov, Y., Balitsky, V. (2011): Growth of tourmaline single crystals containing transition metal elements in hydrothermal solutions. Journal of Crystal Growth 318, 904-907.
[Note: the nomenclature therein is not IMA-approved]

Henry, D.J. & Dutrow, B.L. (2012): Tourmaline at diagenetic to low-grade metamorphic conditions: Its petrologic applicability. Lithos 154, 16-32.

Vereshchagin, O. S., Rozhdestvenskaya, I. V., Frank-Kamenetskaya, O. V., Zolotarev, A. A. (2014): Ion substitutions and structural adjustment in Cr-bearing tourmalines. European Journal of Mineralogy 26, 309-321.

Fantini, C., Tavares, M.C., Krambrock, K., Moreira, R.L., Righi, A. (2014): Raman and infrared study of hydroxyl sites in natural uvite, fluor-uvite, magnesio-foitite, dravite and elbaite tourmalines. Physics and Chemistry of Minerals 41, 247-254.

Kutzschbach, M., Wunder, B., Rhede, D., Koch-Müller, M., Ertl, A., Giester, G., Heinrich, W., Franz, G. (2016): Tetrahedral boron in natural and synthetic HP/UHP tourmaline: Evidence from Raman spectroscopy, EMPA, and single-crystal XRD. American Mineralogist: 101: 93-104.

Taran, M.N. and Naumenko, I.V. (2016): Usambara effect in tourmaline: optical spectroscopy and colourimetric studies. Mineralogical Magazine 80, 705-717.

Berryman, E.J., Wunder, B., Ertl, A., Koch-Müller, M., Rhede, D., Scheidl, K., Giester, G., and Heinrich, W. (2016): Influence of the X-site composition on tourmaline’s crystal structure: investigation of synthetic K-dravite, dravite, oxy-uvite, and magnesio-foitite using SREF and Raman spectroscopy. Physics and Chemistry of Minerals, 43, 83-102.

Hawthorne, F.C. (2016): Short-range atomic arrangements in minerals. I: The minerals of the amphibole, tourmaline and pyroxene supergroups. Eur. J. Mineral. 28, 513-536.

Watenphul, A., Burgdorf, M., Schlüter, J., Horn, I., Malcherek, T., Mihailova, B. (2016): Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: II. Tourmalines. American Mineralogist, 101, 970-985.

Watenphul, A., Schlüter, J., Bosi, F., Skogby, H., Malcherek, T., Mihailova, B. (2016): Influence of the octahedral cationic-site occupancies on the framework vibrations of Li-free tourmalines, with implications for estimating temperature and oxygen fugacity in host rocks. American Mineralogist, 101, 2554-2563.

Pesquera, A., Gil-Crespo, P.P., Torres-Ruiz, F., Torres-Ruiz, J., Roda-Robles, E. (2016): A multiple regression method for estimating Li in tourmaline from electron microprobe analyses. Mineralogical Magazine, 80, 1129-1133.

Bosi, F., Cámara, F., Ciriotti, M.E., Hålenius, U., Reznitskii, L. and Stagno, V. (2016): Crystal-chemical relations and classification problems in tourmalines belonging to the oxy-schorl – oxy-dravite – bosiite – povondraite series. European Journal of Mineralogy: 28 (in press); (2017)

Internet Links for Tourmaline URL:
Please feel free to link to this page.
The following Tourmaline specimens are currently listed for sale on

Localities for Tourmaline

map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.
Mineral and/or Locality is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © and the Hudson Institute of Mineralogy 1993-2017, except where stated. relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: April 24, 2017 12:25:38 Page generated: April 24, 2017 07:20:02
Go to top of page