Strickland Quarry (Eureka Quarry), Strickland pegmatite (Strickland-Cramer Quarry; Strickland-Cramer Mine; Strickland-Cramer Feldspar-Mica Quarries), Collins Hill, Portland, Middlesex Co., Connecticut, USAi

Latitude & Longitude (WGS84): | 41° 35' 31'' North , 72° 35' 30'' West | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Latitude & Longitude (decimal): | 41.59222,-72.59167 | ||||||||||||||||||
GeoHash: | G#: drkks5sk7 | ||||||||||||||||||
USGS MRDS Record: | 10264493 | ||||||||||||||||||
Locality type: | Quarry | ||||||||||||||||||
Köppen climate type: | Dfa : Hot-summer humid continental climate | ||||||||||||||||||
Nearest Settlements: |
|
A former feldspar-mica-Be-Nb-Ta-REE-Sn quarry in granite pegmatite located on the west side and near the summit of Collins Hill, 2½ miles (4 km) NE of Portland. It operated in the Strickland pegmatite along with the separate, underground Schoonmaker or Cramer Mine to the immediate north (a separate locality), though the two were not connected until perhaps the last few years of operations. All the dumps formerly around the quarry except the largest, northernmost one belonged to the Strickland Quarry. The northernmost dump belonged to the Schoonmaker or Cramer Mine. Because most collectors did not realize the northern dump belonged to a different operation, most specimens are referred to as coming from the Strickland Quarry no matter where collected. The difference is largely academic anyway because all the minerals came from the same pegmatite and the mineralogy, pegmatite zoning, and host rocks of the Strickland Quarry and Schoonmaker Mine are similar. Any specimen can be generically attributed to the Strickland pegmatite. When a golf course on the site was constructed in the 1990s all of the dumps were removed, and although the flooded quarry pit is still present, collecting is no longer allowed or possible.
Mining supposedly began in the 1840s according to Foye (1922) who stated:
"The quarry was opened as early as 1840. There is a pitcher, bearing in gilt the name of Strickland, now preserved in Wesleyan Museum, which was made from feldspar taken from the quarry at that early date."
If so, it must have been a minor operation as it is not mentioned in Beers' (1884) History of Middlesex County. Ralph Pelton's quarry is mentioned, but this is a separate locality just east of Collins Hill.
Strickland Quarry was operated by F. E. Strickland from 1904 to 1945. It was leased to Eureka Flint & Spar Co., Eureka Mining & Operating Co. or Eureka Mica & Mining Co. Successive operators were F. E. Strickland, George Wilkes, and William Wilkes.
Mostly it was involved in feldspar production before 1937 but was a big mica producer 1930-37, 1942-45, and 1952-53 (from wall zones). It produced 2,000 to 5,000 long tons of feldspar per year and 200 to 400 tons of mica after 1927; also quartz, beryl, and gemstones. Workings include an open cut 300 feet long by 200 feet wide and 140 feet deep. The east cut quarried up to 100 feet deep & connected mines worked 1914-37. Wall zones were mined underground mostly to the north in the 1940s & 1950s.
Cameron (1954) summarized the pegmatite and its zones as follows:
Exposed in east quarry cut and for over 720 ft N-S by 240 ft E-W, 8-60 ft thick. Dips west 30-75 degrees.
Five lithologic zones:
1. quartz-muscovite-plagioclase border zone, 1-8 in. thick
2. plagioclase-quartz-muscovite wall zone, 1-7 ft thick (mica zone – books up to 6 feet!)
3. microcline perthite-graphic granite-quartz-plagioclase intermediate zone 1-22 ft thick (perthite crystals up to 22 ft!)
4. plagioclase (cleavelandite)-quartz intermediate zone up to 45 ft thick
5. quartz core
Mineralization is a pegmatite deposit (Deposit Model code 33; USGS model code 13a; name: Be-Li pegmatites) Late Permian in age, hosted in the Ordovician Collins Hill Formation (= Partridge Formation of New Hampshire). The ore body strikes N-S and dips 35-40/50W at a thickness of 6.71/9 meters, a width of 73 meters and a length of 229 meters, covering an area of 4.8 HA. It is lenticular in shape. The primary mode of origin was magmatic differentiation and secondary was hydrothermal. Primary ore control was bedding. There is moderate wall rock alteration (silicification).
Located in the Middletown Pegmatite District comprising a swarm of Permian (~260 mya) pegmatite dikes; locally in a north-trending zone, mostly in the Ordovician Collins Hill Formation; but dikes are also present in eastward adjacent Ordovician Glastonbury Gneiss and westward adjacent Ordovician Middletown Formation.
The most diverse mineralogy and miarolitic pockets were mostly found with pale blue to white cleavelandite in zone 4. Descriptions of gem elbaite-rich pockets are found in Bastin (1910), Shannon (1920), Sterrett (1923), and Stearns (1983). Most elbaite is green, but there are concentrically zoned crystals with an olive green exterior, blue intermediate zone, on a core of schorl; classic watermelon tourmaline; and a plethora of pastel shades of gray, pink, green, blue, lavender to colorless. The miarolitic pockets were shattered after initial crystallization as most elbaite crystals are fragmented along with quartz and cleavelandite, with some dissolution of these minerals and so are seldom terminated. If they are terminated they may have a dark blue terminal zone with simple pedion or a very shallow rhombohedral form. Capillary overgrowths cause a schiller effect on many small crystals. Subsequently to pocket collapse, K-rich albite crystallized as separate micro-crystals and as overgrowths on cleavelandite along with quartz as overgrowths on quartz fragments and as tiny microcrystals among the K-rich albite. The latter white to tan colored mineral formed fine-grained masses or druses that host fragmented elbaite and very late forming minerals such as purple fluorapatite, white hydroxylapatite, cookeite, fluorite, pyrite, calcite, chlorite, bertrandite, schernikite, rare zeolites, and masses of fine-grained, secondary, capillary to hairy tourmaline.
The host Collins Hill Formation is a gray, rusty-weathering, medium- to coarse-grained, poorly layered schist, composed of quartz, oligoclase, muscovite, biotite, and garnet, generally graphitic, interlayered with fine-grained two-mica gneiss, especially to the west, and with calc-silicate and amphibolite layers, also rare quartz-almandine [coticule] layers with rare rutile. The schist units contain kyanite, ilmenite, cordierite, pyrrhotite and chalcopyrite in quartz pods and small alpine-cleft type openings with albite (oligoclase), muscovite, pyrite, chlorite, and anatase. The calc-silicate (skarn) units contain a typical Barrovian assemblage of anorthite, actinolite, augite, calcite, diopside, scapolite, grossular, zoisite, vesuvianite, etc. Within this rock, a rare assemblage of wollastonite with gehlenite, spurrite, larnite, grossular, quartz, diopside, vesuvianite, and calcite was documented by Schooner (circa 1985). These and other host rock primary and secondary (gypsum, pickeringite, melanterite, epsomite, sulfur, etc.) minerals are included in the locality species list.
Regions containing this locality
North America Plate | Tectonic Plate |
Select Mineral List Type
Standard Detailed Strunz Dana Chemical ElementsDetailed Mineral List:
ⓘ Actinolite ? Formula: ☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2 Habit: crystalline masses Colour: green Description: A purported component of calc-silicate layers in the host Collins Hill formation. At least one specimen apparently of such material has proven to be magnesio-hornblende based on TEM-EDS analysis. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
Albite Formula: Na(AlSi3O8) Habit: primary crystals blocky, complex, striated. Secondary ones tabular, rhombic, as druses or overgrowths Colour: white, tan Description: Mostly a rock-forming mineral, as coarse, white grains in the outer zones of the pegmatite. But also as a very late crystallizing K-rich variety (described by Jenks 1935), very fine-grained and tan colored with cleavelandite in the inner mineralized zone. The K-rich variety forms tiny, tabular, rhombic crystals or saw-toothed overgrowths on cleavelandite in numerous small pockets in this zone. Reference: Jenks, William F. (1935): Pegmatites at Collins Hill, Portland, Conn. American Journal of Science: s. 5, 30: 177-197.; Cameron, Eugene N., Larrabee David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338.; Stugard, Frederick, Jr. (1958): Pegmatites of the Middletown Area, Connecticut. USGS Bulletin 1042-Q.
|
Albite var: Cleavelandite Formula: Na(AlSi3O8) Habit: tabular Colour: white to pale blue or green Description: Coarse tabular aggregates, commonly with terminations in interstitial spaces, forms much of the matrix of the up to 45-foot-thick plagioclase-quartz intermediate zone that hosts much of the interesting mineralization such as morganite, elbaite, spodumene, lepidolite, montebrasite, K-rich albite, cookeite, columbite, tantalite, wodginite, quartz crystals, etc. Reference: Cameron, Eugene N., Larrabee, David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338. |
ⓘ Albite var: Oligoclase Formula: (Na,Ca)[Al(Si,Al)Si2O8] Habit: anhedral grains to parallel-growth Colour: white Description: The typical albite variety in host metamorphic rocks, best crystals are parallel growth habit in Alpine-cleft type openings within the host Collins Hill Formation schist unit, with cubic pyrite, chlorite and tiny anatase crystals. Reference: Stugard, Frederick, Jr. (1958): Pegmatites of the Middletown Area, Connecticut. USGS Bulletin 1042-Q. |
ⓘ Formula: {CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH) Description: Only a generic mention of occurring in the pegmatites of Portland, Schooner (1955) just mentions Schairer and says he "has not observed it at the locality." Reference: Schairer, J. F. (1931): The Minerals of Connecticut. State Geological and Natural History Survey Bulletin 51.; Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Almandine Formula: Fe2+3Al2(SiO4)3 Habit: trapezohedral, granular Colour: maroon to red-brown Description: As generally small crystals in the outer zones of the pegmatite, but also massive concentrations mixed with fluorapatite, zinnwaldite/masutomilite, elbaite and columbite-(Fe) in cleavelandite. Gemmy crystals in this assemblage confirmed using Raman spectroscopy typically partially replaced by waxy yellow fine-grained muscovite (also confirmed by Raman).
Also, in the host metamorphic rocks as a component of "coticule" rock. This rock is described by Lundgren (1979) (the bedrock quadrangle report for Haddam - QR37) as a "bedded garnet-quartz rock (coticule) that consists of thin layers (millimeter-to-centimeter thick) of fine-grained spessartine-quartz granofels. Plagioclase, biotite [annite], and hornblende are present in some layers, but the rocks are essentially aggregates of very small (less than 0.05-0.1 mm) garnet crystals and quartz." Though coticule from around New England has been described as containing spessartine, the particular garnet species here was recently confirmed as almandine using Raman spectroscopy by Paul Bartholomew at U. New Haven.
Schooner describes coticule as "a granular pink spessartine rock...can be found in many parts of the area, as in the vicinity of the Strickland quarry. Veins are usually thin and sinuous, but may reach a thickness of several inches. Such material is attractive in large polished slabs." Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Formula: LiAl(PO4)F Description: Re-identified as montebrasite. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
Analcime Formula: Na(AlSi2O6) · H2O Habit: trapezohedra Colour: white Description: Very late crystallizing with fluorite and siderite in pockets of K-rich albite and cleavelandite of the inner mineralized zone. Reference: Harold Moritz collection |
ⓘ Anatase Formula: TiO2 Habit: crude to perfect elongated bipyramidal Colour: metallic to honey-brown Description: Tiny micro-crystals <1 mm crudely to perfectly crystalline and appear metallic on the crystal surfaces, broken ones reveal honey-brown, resinous interior. Associated with cubic pyrite and chlorite crystals in spaces between vuggy albite in host schist Alpine-type openings.
Schooner (circa 1985) reports: "A micromount of anatase and rutile crystals, associated with adularia, was once collected at the Strickland quarry. Narrow alpine-type veins are encountered in the schist adjoining the pegmatite." Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Anglesite ? Formula: PbSO4 Habit: coating Colour: gray Description: Schooner (1955): a thin grayish coating on galena which had been exposed to much weathering on the oldest of the Strickland Quarry dumps. The matrix, in his one good specimen, is a mixture of secondary albite and gray lepidolite. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Annite Formula: KFe2+3(AlSi3O10)(OH)2 Habit: tabular to bladed Colour: black Description: fka biotite, mostly in the outer zones, can be interlaminated with muscovite and partly altered to chlorite.
Zodac (1937) gives this summary:
One interesting specimen penetrating muscovite, on albite, was collected. Associated with the albite was smoky quartz. Small biotite plates, fair in quality, were found imbedded in large plates of muscovite. Minute flakes of biotite are dis¬seminated in muscovite sheets. Large black plates, of good quality, and imbedded in muscovite, were also found. One specimen of muscovite, 3x4 inches in size, had a biotite crystal 1 ¾ x 3 inches in size, imbedded in it in such a way that the muscovite was present only as narrow strips on the biotite’s two long edges. In some parts of the quarry biotite is very plentiful. The south end of the open part of the quarry had to be abandoned because there was so much biotite in the spar. The old dump (No. 1) contains a lot of biotite. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Cameron, Eugene N., Larrabee David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338.; Zodac, Peter. (1937): Minerals of the Strickland Quarry. Rocks & Minerals: 12: 131-144. |
ⓘ Anorthite Formula: Ca(Al2Si2O8) Habit: massive granular Colour: yellowish Description: According to Schooner (circa 1985): "Yellowish anorthite is rather common in the calc-silicate assembly [in the host Collins Hill Formation]". Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ 'Apatite' Reference: Handbook of Mineralogy (http://www.handbookofmineralogy.org/pdfs/lacroixite.pdf) |
ⓘ Aragonite Formula: CaCO3 Habit: coatings Colour: white Description: as thin coatings on other minerals...invariably mediocre Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Arsenolite ? Formula: As2O3 Habit: powder Colour: yellowish Description: Schooner (1955): "as yellowish powdery incrustations on decomposed arsenopyrite at the Strickland Quarry. One rather large mass of the unusual material was taken out of the pegmatite which adjoins the schist in the cut above the main pit. Pyrite is associated, in all the specimens." Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Arsenopyrite Formula: FeAsS Description: Schooner (1955): "crystals, of the finest quality, though of small size, are rarely collected from the pegmatite at the Strickland Quarry. The author has several specimens, showing the mineral in a variety of matrices, and he saw the remains of a 1 inch crystal, in the wall of the aforementioned cut." Schooner (circa 1985): "Excellent little crystals are rarely found at the Strickland quarry, either isolated or with sphalerite and pyrite. A few 1/2 inch rough crystals were embedded in the interior of a large pseudomorph of muscovite after schorl." Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Augelite Formula: Al2(PO4)(OH)3 Colour: gray Description: Specimens of metasomatically altered natromontebrasite, collected at the Strickland quarry around 1950 by Charles Thomas, consist of gray augelite crystals intergrown with pink brazilianite, pink hydroxylapatite, and yellow lacroixite. Very little such material was preserved, and most of it was consumed in study at the U.S. Geological Survey. Natromontebrasite was discredited in 2007, being a mixture of montebrasite, lacroixite, and wardite. Reference: Schooner, Richard. (circa 1985) Untitled manuscript on central Connecticut mineralogy.;
Handbook of Mineralogy (http://www.handbookofmineralogy.org/pdfs/lacroixite.pdf) |
ⓘ Augite Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6 Habit: massive granular Colour: brown Description: "A striking brown clinopyroxene, with a silky luster, collected at the Strickland quarry, gives an X-ray pattern closer to fassaite than diopside or augite. As learned from similar material, at the railroad cut two miles west, the surficial alteration is a smectite, corroborating the aluminum content. Fassaite also accompanies zoisite, quite abundantly, at ledges immediately west of the Strickland quarry." Schooner (circa 1985). Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Augite var: Fassaite Formula: (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6] Habit: massive granular Colour: brown Description: "A striking brown clinopyroxene, with a silky luster, collected at the Strickland quarry, gives an X-ray pattern closer to fassaite than diopside or augite. As learned from similar material, at the railroad cut two miles west, the surficial alteration is a smectite, corroborating the aluminum content. Fassaite also accompanies zoisite, quite abundantly, at ledges immediately west of the Strickland quarry." Schooner (circa 1985). Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Autunite Formula: Ca(UO2)2(PO4)2 · 11H2O Habit: tabular flakes, coatings Colour: pale yellow Fluorescence: bright green Description: Should be referred to as meta-autunite as all such material is dehydrated. Associated with uraninite and uranophane. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Bavenite Formula: Ca4Be2Al2Si9O26(OH)2 Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Bazzite Formula: Be3Sc2(Si6O18) Reference: From Richard Schooner collection, now int he Anthony J. Albini collection, personally collected by Richard and analyzed. |
Bertrandite Formula: Be4(Si2O7)(OH)2 Habit: tabular or as v-twins Colour: colorless to pale green Description: Clear, glassy, micro-crystals in pockets with secondary albite. Groups of distinct crystals and reticulated platy aggregates up to several inches in diameter have been collected. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Henderson, William A., Jr. (1975): The Bertrandites of Connecticut. Mineralogical Record: 6(3): 114-123.; Henderson, William A. (1995): Microminerals of Connecticut. Rocks & Minerals: 70(6): 420-425. |
Beryl Formula: Be3Al2(Si6O18) Habit: hexagonal prisms with pinacoids Colour: pale green Description: Large rough masses, plenty of ore grade material, less commonly as subhedral to euhedral hexagonal crystals in matrix. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Cameron, Eugene N., Larrabee, David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338. |
Beryl var: Aquamarine Formula: Be3Al2Si6O18 Habit: elongated hexagonal prisms with pinacoids Colour: blue Description: Typically rough masses or subhedral to euhedral hexagonal crystals in matrix. Gem material was common. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Beryl var: Heliodor Formula: Be3Al2(Si6O18) Habit: massive to subhedral hexagonal crystals Colour: yellow Reference:
Cameron, Eugene N., Larrabee, David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338. |
Beryl var: Morganite Formula: Be3Al2(Si6O18) Habit: anhedral to subhedral tabular hexagonal Colour: pink to rosy Description: Usually anhedral to subhedral filling spaces in cleavelandite. Some gems have been cut. The Peabody Museum of Yale University exhibits a superb, gemmy, rose beryl crystal, six or eight inches across and no more than two inches thick. Sterrett (1923) describes another morganite on display at Wesleyan: "in one pocket an irregularly shaped fragment of transparent pale salmon-pink beryl was found. It is 2 1/2 inches long and 1 inch thick, with an exceedingly rough honeycombed and drusy surface. It is evidently the remnant of a much larger crystal, most of which has been dissolved, leaving only a part with a rough etched surface." Reference: Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.; Jarnot, Bruce. (1995): Connecticut Gems and Gem Minerals. Rocks & Minerals: 70(6): 378-382.; Sterrett, Douglas B. (1923), Mica Deposits Of The United States, USGS Bulletin 740: 65-67. |
ⓘ Bismite ? Formula: Bi2O3 Description: Schooner (1955) only says it was reported "many years ago". Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Bismuthinite ? Formula: Bi2S3 Description: "Not seen" by Schooner (1955). Schairer (1931) seems to be the source of all later repetition, and he said it was found "very rarely" in Portland. This generic reference could mean the much older Pelton Quarry where it is known. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schairer, J. F. (1931): The Minerals of Connecticut. State Geological and Natural History Survey Bulletin 51. |
ⓘ Bismutite ? Formula: (BiO)2CO3 Description: Early references such as Schairer (1931) only attribute the mineral to "Portland" and this could easily mean the older Pelton Quarry where it is known. Schooner (1958) says: "The Wesleyan University collection...contains a solid two inch mass of the mineral from Portland. The exact source may have been the Strickland Quarry, though it is not specified on the label". Reference: Schairer, J. F. (1931): The Minerals of Connecticut. State Geological and Natural History Survey Bulletin 51.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Bityite Formula: LiCaAl2(AlBeSi2O10)(OH)2 Habit: hexagonal Colour: white Description: Schooner (circa 1985) says: "When the Strickland quarry was last active, the author found a boulder of cleavelandite with a small vug of aggregated lustrous white hexagonal-looking crystals with calcite and a trace of lepidolite. It was many years before the mineral was recognized as being a mica! Its unusual X-ray pattern aroused some curiosity, and it was forwarded to Pete J. Dunn at the Smithsonian. He identified it as bityite, and made an analysis by electron microprobe." Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Brazilianite Formula: NaAl3(PO4)2(OH)4 Colour: pink Description: Schooner (circa 1985) says: "A few masses of Strickland quarry natromontebrasite, from the pollucite zone in the middle eastern wall, halfway down, are composed of intergrown metasomatic or hydrothermal alterations. Pink brazilianite, containing a trace of Mn (analysis by the USGS), is associated with augelite, lacroixite, and hydroxylapatite. This mineral was collected by Charles Thomas, and studied by Mary E. Mrose. Ronald E. Januzzi had earlier collected material, on the old dumps, in which the brazilianite occurs as confused white aggregates, with hydroxylapatite and possibly morinite." Natromontebrasite was discredited in 2007, being a mixture of montebrasite, lacroixite, and wardite. Reference: Schooner, Richard. (circa 1985) Untitled manuscript on central Connecticut mineralogy.;
Handbook of Mineralogy (http://www.handbookofmineralogy.org/pdfs/lacroixite.pdf)
|
ⓘ Calcite Formula: CaCO3 Habit: tabular hexagonal, isolated or in stacks or as "nail heads" Colour: white, pale yellow, tan Description: Typically as micro crystals or cleavable masses in pockets in K-rich albite of the inner mineralized zone associated with pyrite and fluorite. Crystals up to 1/2 inch or more. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.;
Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Cassiterite Formula: SnO2 Habit: twinned bipyramids Colour: deep red-black to dark brown Description: Tiny, dark, lustrous, sharp crystals typically embedded in lepidolite or spodumene with K-rich albite. Can easily be confused with tantalite-(Mn) or wodginite, though these minerals are differentiated from it by their strong iridescence. Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Chalcopyrite Formula: CuFeS2 Habit: massive Description: usually intergrown with pyrrhotite in quartz veins in the Collins Hill Formation, but it is seldom seen as more than traces Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ 'Chlorite Group' Habit: hexagonal vermiformed micro-crystals, dusty flakes, massive replacing almandine or annite Colour: dark green Description: In vugs on albite rarely associated with anatase and pyrite in Alpine-type clefts in the host schist. In the pegmatite as pseudomorphs after almandine or annite. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8 |
ⓘ Formula: Mg3(Si2O5)(OH)4 Description: Thoroughly unreasonable guess. Reference: Januzzi, Ronald E. (1976): Mineral Localities of Connecticut and Southeastern New York State (Taylor Assoc./Mineralogical Press). |
ⓘ Clinozoisite Formula: {Ca2}{Al3}(Si2O7)(SiO4)O(OH) Description: In the host metamorphic rocks. Reference: Januzzi, Ronald E. (1976): Mineral Localities of Connecticut and Southeastern New York State (Taylor Assoc./Mineralogical Press). |
Columbite-(Fe) Formula: Fe2+Nb2O6 Habit: tabular to elongated prisms Colour: black with yellow, blue to purple iridescence Description: As small pocket crystals to large subhedral masses in the intermediate plagioclase-quartz mineralized zone. Schooner (1958): "innumerable specimens, including well developed crystals up to three or four inches across; heavy aggregates of parallel tabular crystals in cleavelandite were abundant when the locality was active in 1953." Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.
|
Cookeite Formula: (Al2Li)Al2(AlSi3O10)(OH)8 Habit: micro-globular aggregates, masses, pseudomorphs after spodumene Colour: pale yellow Description: Typically as tiny spheres of crystal aggregates with K-rich albite, micas, elbaite, quartz, calcite, pyrite, fluorite, and bertrandite in cleavelandite of the mineralized intermediate plagioclase-quartz zone. Rare pseudomorphs of spodumene. Schooner (1955) says: "solid masses of bright yellow fine-grained material. Some pieces were seen to be as much as 4 or 5 inches thick, the mineral having occurred as a lining in a long cavity or series of cavities." Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Cordierite Formula: (Mg,Fe)2Al3(AlSi5O18) Description: Foye (1922): "found within the Bolton [Collins Hill] schist a few centimeters from its contact with the pegmatite". Reference: Foye, Wilbur. G. (1922): Mineral Localities in the Vicinity of Middletown, Connecticut. American Mineralogist: 7(1): 4-12. |
ⓘ Crandallite ? Formula: CaAl3(PO4)(PO3OH)(OH)6 Description: Schooner (1955) reports it "as microscopic crystals associated with bertrandite" found by Gunnar Bjareby. However, he does not mention it in any of his subsequent writings on the area. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Dickinsonite-(KMnNa) Formula: {KNa}{Mn2+◻}{Ca}{Na3}{Mn2+13}{Al}(PO4)12(OH)2 Habit: flakes, coating on altered lithiophilite Colour: olive green Description: Schooner (1955): "Little scales of the rare phosphate are seen on a few specimens." Reference: Schairer, J. F. (1926): Lithiophilite and Other Rare Phosphates from Portland, Connecticut. American Mineralogist: 11(4): 101-104.; Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Diopside Formula: CaMgSi2O6 Habit: massive Colour: light green Description: Common in calc-silicate units in the host Collins Hill Formation intergrown with actinolite and grossular. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
Elbaite Formula: Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH) Habit: elongated prisms Colour: olive to grass green; blue-green; bright pink; pastel green, pink (watermelon), blue and gray to colorless Fluorescence: blue Description: Mostly subhedral, shattered crystals in matrix but several crystal-rich pockets are described in the literature. Crystals common in late-stage vuggy cleavelandite with tan, high-K albite, quartz, pyrite, mica, cookeite, micas, etc. Most crystals grass green throughout, usually poorly terminated in cookeite or albite, may show pedion or shallow rhomb or grade into parallel asbestiform crystals. Crystals generally concentrically rather than longitudinally color zoned. Green and blue-green overgrowths (these may be foitite) on schorl common or concentrically zoned with very dark blue-green core, grass green intermediate zone and olive green outer zone. Smaller crystals can be pure bright pink, these are commonly etched. Pastel colored crystals can be watermelon zoned (some pink cores fluoresce blue) or almost blue-gray and lavender-gray to colorless. A blue-gray alteration is common in fractures through the lavender crystals. Reference: Bastin, Edson S. (1910): Economic Geology of the Feldspar Deposits of the United States. United States Geological Survey Bulletin 420, Government Printing Office.; Sterrett, Douglas B. (1923), Mica Deposits Of The United States, USGS Bulletin 740: 65-67.; Shannon, Earl V. (1920): Strickland's Quarry, Portland, Connecticut. American Mineralogist: 5(3): 51-54.; Stearns, H. T. (1983): Memoirs of a Geologist: From Poverty Peak to Piggery Gulch. Hawaii Institute of Geophysics, Honolulu.; Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Cameron, Eugene N., Larrabee, David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1945), Structural And Economic Characteristics Of New England Mica Deposits. Economic Geology: 11(6): 378-380.
Bastin (1910), Shannon (1920), Sterrett (1923), and Stearns (1983) |
ⓘ Eosphorite Formula: Mn2+Al(PO4)(OH)2 · H2O Description: Rarely occurs with rhodochrosite and other secondary alterations of lithiophilite nodules. Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Epsomite Formula: MgSO4 · 7H2O Habit: efflorescence Description: Schooner (1958): "occurs very sparingly with pickeringite, in efflorescences on protected schist ledges in the cut above the Strickland Quarry. It is distinguished from pickeringite by its different taste… the same as that of artificial Epsom salt." Reference: Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Formula: LiAlSiO4 Description: Speculation by Schooner. Reference: Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Formula: (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6 Description: Reference by Januzzi (1976) to this mineral being found by Schooner in "Portland" correlates only with a report by Schooner (circa 1985) from the Hale Quarry in Portland. Schooner makes no mention if it from Strickland in his various comprehensive publications, especially his last, Schooner (circa 1985). Reference: Januzzi, Ronald E. (1976): Mineral Localities of Connecticut and Southeastern New York State (Taylor Assoc./Mineralogical Press): 234-5. |
ⓘ Fairfieldite Formula: Ca2Mn2+(PO4)2 · 2H2O Habit: radiating Colour: white Description: radiating fans of micro crystals in altered lithiophilite, with hureaulite, hydroxylapatite. Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy.; Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
Fluorapatite Formula: Ca5(PO4)3F Habit: tabular to short hexagonal prisms Colour: white, pink, green, blue, lavender Fluorescence: bright yellow Description: Primary crystallization as typically massive and skeletal segregations mixed with almandine, dark brown mica, and columbite-(Fe) in a cleavelandite matrix. Tons of it were removed during the activity in 1953. But more interesting as a secondary crystallization characterized by clear, white, lavender to pale blue, tabular to short, euhedral micro-crystals (mostly <<1") in pockets with K-rich albite, elbaite, fluorite, pyrite, calcite, micas, etc. Reference: Cameron, Eugene N., Larrabee, David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338.; Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
Fluorapatite var: Mn-bearing Fluorapatite Formula: (Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH) Habit: anhedral to stubby subhedral hexagons Colour: grayish green to blue-green, white, pale blue Fluorescence: yellow Description: An old term that should be abandoned, see description under fluorapatite. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Fluorite Formula: CaF2 Habit: cubic to octahedral Colour: purple, pale green, pale yellow, colorless Description: Typically as small rounded to cubo-octahedral crystals <1-inch, commonly etched, in pockets in secondary K-rich albite of the mineralized quartz-plagioclase intermediate zone, commonly with pyrite and calcite. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.
|
ⓘ Foitite Formula: (□,Na)(Fe2+2Al)Al6(Si6O18)(BO3)3(OH)3OH Description: Grading into elbaite, associated with wodginite, cassiterite, quartz and gobbinsite. Reference: Jarnot, Bruce M. (2011): Letters: Connecticut Update. Rocks & Minerals: 86(4): 299. |
ⓘ Gahnite ? Formula: ZnAl2O4 Description: Schooner (circa 1985) reports that "Rudolf Bartsch, in his 'New England Notes', 'Rocks and Minerals' magazine, somewhere around 1940, described a large specimen of lepidolite studded with green crystals of gahnite. It is well to remember, however, that green microlite also occurs there in lepidolite." Considering the lack of confirmed specimens, they are likely microlite. Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Galena Formula: PbS Habit: cleavable masses Description: Schooner (1955) says: "often been found at the Strickland Quarry by the author. His specimens are mostly of small size, but they show galena in close association with lepidolite, lithiophilite, spodumene, amblygonite albite, manganotantalite, green tourmaline, and yellow sphalerite". In Schooner (circa 1985) he further elaborates: "At the Strickland quarry, little cleavages of galena have often been collected, intimately associated with feldspar or calcite; also in the whole range of lithium minerals, elbaite, spodumene, montebraesite, petalite, and lepidolite; additionally, in the cesium zeolite, pollucite. The largest mass is about an inch in diameter. Occasionally, there are intergrowths of galena with brown sphalerite. In the pollucite zone, a narrow, irregular seam was filled with galena, yielding the odd combinations already cited." Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Gehlenite Formula: Ca2Al(AlSiO7) Habit: tetragonal prisms Colour: light brown Description: Tiny crystals in lens-like bodies of calc-silicate rock in the host Collins Hill Formation. Optical and X-ray study by Waldemar T. Schaller at the USGS indicate gehlenite, associated with diopside, grossular, wollastonite, and spurrite. Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Gobbinsite Formula: Na5(Si11Al5)O32 · 11H2O Description: Asociated with foitite grading into elbaite, wodginite, cassiterite, and quartz. Reference: Jarnot, Bruce M. (2011): Letters: Connecticut Update. Rocks & Minerals: 86(4): 299. |
ⓘ Goethite Formula: α-Fe3+O(OH) Habit: earthy crusts Colour: dark brown Description: In pockets in secondary K-rich albite encrusting other associated minerals and pseudomorphing pyrite, from which it is probably derived. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Goslarite ? Formula: ZnSO4 · 7H2O Habit: efflorescence Colour: white Description: "A thin coating of white goslarite, with a characteristic sharp taste, was found on the protected bottom of a pegmatite boulder, containing sphalerite and pyrite, on a Strickland quarry dump. Such material is, of course, ephemeral, because of its hydrosoluble nature." (Schooner, circa 1985). Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Graphite Formula: C Habit: anhedral Description: Minor component of the host metamorphic rocks. Reference: Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Greenockite ? Formula: CdS Habit: encrustation Colour: yellow Description: Schooner (1955) says it: "was discovered at Collins Hill by the author, about ten years ago. Little was seen, and only one example was collected. The mineral consisted of bright yellow coatings on sphalerite, from the cut above the Strickland Quarry". There is so much else this could be.... Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Grossular Formula: Ca3Al2(SiO4)3 Habit: massive Colour: orange Description: A component of the calc-silicate units in the host Collins Hill Formation, with diopside, and a dark green amphibole (described by Schooner as actinolite, but one specimen analyzed by TEM-EDS has proven to be magnesio-hornblende). Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Groutite Formula: Mn3+O(OH) Habit: massive crust Colour: black Description: Thick black crust on altered lithiophilite with hureaulite and hydroxylapatite. Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Gypsum Formula: CaSO4 · 2H2O Habit: crusts of microcrystals Colour: white to gray Description: Schooner (1958) reports it as clusters of very delicate white or gray crystals on protected ledges of schist and gneiss. Reference: Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ ' Formula: Al2(Si2O5)(OH)4 Description: Reference by Januzzi (1976) to this mineral being found by Schooner in "Portland" correlates only with a report by Schooner (circa 1985) from the Walden Gem Quarry in Portland. Schooner makes no mention if it from Strickland in his various comprehensive publications, especially his last, Schooner (circa 1985). Reference: Januzzi, Ronald E. (1976): Mineral Localities of Connecticut and Southeastern New York State (Taylor Assoc./Mineralogical Press): 234-5. |
ⓘ Hematite Formula: Fe2O3 Habit: encrustation Colour: red Description: Schooner (1955) reports it "as rouge-like coatings on mica schist, is abundant in the cut which is located above the main part of the Strickland Quarry". Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Hureaulite Formula: (Mn,Fe)5(PO4)2(HPO4)2 · 4H2O Habit: massive, etched Colour: red-brown, orange-red to pink Description: massive, earthy to vitreous, translucent, etched, cellular alteration of lithiophilite, with white hydroxylapatite and sicklerite. Confirmed again in 2014 using Raman spectroscopy, by Paul Bartholomew, U. New Haven. Reference: Schairer, J. F. (1926): Lithiophilite and Other Rare Phosphates from Portland, Connecticut. American Mineralogist: 11(4): 101-104.;
Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Hydroxylapatite Formula: Ca5(PO4)3(OH) Habit: pearly opalescent crust or stubby, rounded hexagons Colour: white Description: As white overgrowth on purple fluorapatite as a late crystallization hosted by K-rich albite and as a massive to micro chalky-white crystals and opalescent rind around altered lithiophilite with hureaulite and groutite. Schooner (circa 1985) calls the latter opaline or chalcedonic variety francolite (under the heading for carbonate fluorapatite). Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy.; Harold Moritz collection. |
ⓘ Hydroxylherderite Formula: CaBe(PO4)(OH,F) Habit: microscopic chisel-shaped Colour: colorless Description: Very fine grained granular alteration of beryl (with moraesite) with tiny, chisel-like clear crystals in tiny voids. Reference: Harold Moritz collection |
ⓘ Ilmenite ? Formula: Fe2+TiO3 Description: Zodac (1937) reports it as occurring as "Black plates along contact of white albite and grayish microcline." This is an odd, very questionable occurrence and later in the same document, he describes "smoky quartz...which had through its center a minutely thin vein of black tourmaline resembling a thin plate of ilmenite", which makes one wonder about the other piece. Schooner does not describe any other specimens. Reference: Zodac, Peter. (1937): Minerals of the Strickland Quarry. Rocks & Minerals: 12: 131-144. |
ⓘ Kaolinite Formula: Al2(Si2O5)(OH)4 Colour: white Description: chalky masses, in association with calcite and pyrite Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ 'K Feldspar' Reference: Former Ronald Januzzi collection |
ⓘ 'K Feldspar var: Adularia' Formula: KAlSi3O8 Colour: creamy Description: Microcrystals in voids in amphibolite with tremolite. Reference: Former Ronald Januzzi collection |
ⓘ Kyanite Formula: Al2(SiO4)O Habit: elongated blades Colour: blue Description: Found in metamorphic host rock, especially above a small rock quarry on the west side of the hill to the right of the road which ascends Collins Hill. Crystals to a few inches. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.
|
ⓘ Lacroixite Formula: NaAl(PO4)F Habit: granular Colour: pale yellow Description: From Schooner (circa 1985): "Mary E. Mrose [USGS] studied some exceptional material collected at the Strickland quarry by Charles Thomas, when the last sporadic work was done in the non-flooded pit. Lacroixite formed rather granular pale yellow areas in a mixture of augelite, brazilianite, and hydroxylapatite (?), replacing natromontebrasite. Her paper redefined the species, which had been in question." Natromontebrasite was discredited in 2007, being a mixture of montebrasite, lacroixite, and wardite. Reference: Schooner, Richard (circa 1985) Untitled manuscript on central Connecticut mineralogy.;
Handbook of Mineralogy (http://www.handbookofmineralogy.org/pdfs/lacroixite.pdf). |
ⓘ Larnite Formula: Ca2SiO4 Colour: grayish Description: Schooner (circa 1985): "One of the calc-silicate pods at the Strickland quarry contained the usual fine-grained diopside, grossularite, and wollastonite, with the addition of a 1/2 inch zone of grayish cleavable larnite, giving a distinct X-ray pattern." Studied by Waldemar T. Schaller of USGS. Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
'Lepidolite' Habit: tabular books, micaceous to globular Colour: purple Description: Common associated minerals are cleavelandite, quartz, spodumene, montebrasite, elbaite, microlite, cassiterite. Usually granular, but books to a few inches across occur. Reference:
Cameron, Eugene N., Larrabee, David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338.; Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ 'Limonite' Formula: (Fe,O,OH,H2O) Habit: crusts and coatings Colour: brown Description: stains or coatings on other minerals Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Lithiophilite Formula: LiMn2+PO4 Habit: nodules Colour: orange through salmon-pink to light brown Description: Specimens up to 8 inches are known, but most are nearer to an inch or two. Much is altered. Slight alteration shows a yellowish, granular, glassy mineral that may be stewartite. More heavily altered material is typically pinkish hureaulite, brown rhodochrosite, a rind of granular to earthy and opalescent hydroxylapatite, fairfieldite, sicklerite as a very thin brown crust, groutite as a thick black crust. These can occur in microcrystallized vugs.
Schairer (1926) found it be fairly pure and Moore (2000) found an Mn/Mn + Fe ratio of 0.97. Reference: Schairer, J. F. (1926): Lithiophilite and Other Rare Phosphates from Portland, Connecticut. American Mineralogist: 11(4): 101-104.; Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Moore, P. B. (2000): Analyses of Primary Phosphates from Pegmatites in Maine and Other Localities, in V. T. King (editor), Mineralogy of Maine. Mining History, Gems, and Geology, Maine Geological Survey, Augusta, Maine: 333-336. |
ⓘ Löllingite Formula: FeAs2 Habit: tabular microcrystals Colour: iridescent Description: Some beautifully developed crystals have come from the Strickland Quarry, including small brilliant ones in granular lepidolite (Schooner, 1961). A few years ago, some tiny iridescent tabular crystals were noted in specimens of coarsely granular golden-brown zinnwaldite from the Strickland quarry. X-ray study indicates they are loellingite (Schooner. circa 1985). Reference: Schooner, Richard. (1961): The Mineralogy of Connecticut. Fluorescent House, Branford, Connecticut.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Magnesio-hornblende Formula: ☐{Ca2}{Mg4Al}(AlSi7O22)(OH)2 Habit: acicular masses Colour: dark green Description: Crystalline masses matching the description of "actinolite" by Schooner with grossular and rutile, part of a calc-silicate assemblage in the Collins Hill Formation hosting the pegmatite. Identified by TEM-EDS in 2016. Reference: Eric Quinter collection |
ⓘ Magnetite Formula: Fe2+Fe3+2O4 Habit: micro inclusions in mica Colour: black Description: Magnetite inclusions are present in many mica books, especially in mica from the part of the wall zone along the footwall. Reference: Cameron, Eugene N., Larrabee, David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338. |
ⓘ 'Manganese Oxides' Habit: dendritic encrustations Colour: black Reference: Van King |
ⓘ 'Manganese Oxides var: Manganese Dendrites' Habit: dendritic encrustations Colour: black Reference: Van King |
ⓘ Formula: Mn3+O(OH) Description: Speculation by Schooner (1958). Black crusts associated with altered lithiophilite are groutite. Reference: Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Masutomilite Formula: (K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2 Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Melanterite Formula: Fe2+(H2O)6SO4 · H2O Habit: alteration crust on pyrite Colour: gray Description: Very fragile grayish crystals on decomposing pyrite and pyrrhotite. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Meta-autunite Formula: Ca(UO2)2(PO4)2 · 6-8H2O Habit: tabular flakes Colour: pale yellow Fluorescence: bright green Description: Forming thin, sometimes invisible crusts (detected by their bright green SW and LW UV fluorescence) around altered uraninite, with yellow uranophane. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Metatorbernite ? Formula: Cu(UO2)2(PO4)2 · 8H2O Description: Schooner (1955) states only that it has been reported. Details and specimens lacking. Though certainly possible, examined specimens of alterations around uraninite show uranophane and meta-autunite but no green metatorbernite. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Microcline Formula: K(AlSi3O8) Habit: anhedral to blocky subhedral Colour: white, tan Description: The principal mineral mined by the 1000s of tons for creramic glaze. From Cameron et al (1954): "The [microcline] perthite-graphic granite-quartz-[albite] plagioclase intermediate zone ranges from 1 to about 22 feet thick. The principal mineral is coarse blocky [microcline] perthite in crystals as much as 15 feet in maximum diameter, with subordinate quartz, in part graphically intergrown with [microcline] perthite". Reference: Cameron, Eugene N., Larrabee, David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338. |
ⓘ 'Microlite Group' Formula: A2-mTa2X6-wZ-n Habit: dodecahedral often with octahedral and cubic forms Colour: black, honey brown, dark green, yellow-green Description: Crystals typically up to a few mm, mostly as broken black crystals in lepidolite and cleavelandite, yellow crystals are rarely embedded in tantalite. Zoned crystals are common, wherein yellow and black sectors are sharply divided. Like most regional microlite, they are radioactive. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Mitridatite Formula: Ca2Fe3+3(PO4)3O2 · 3H2O Habit: alteration Colour: yellow-green Description: Rare coating on altered lithiophilite. Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Molybdenite Formula: MoS2 Habit: tabular hexagonal to anhedral scales Colour: silvery metallic Description: Sharp little crystals to 1/2-inch, shapeless scales, "foil-like wads" in vein quartz with pyrrhotite and chalcopyrite in the host metamorphic rocks or in marginal pegmatite. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Monazite-(Ce) Formula: Ce(PO4) Colour: brown Description: Brown crystals to nearly an inch are rarely intergrown with small columbite crystals and fluorapatite. Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Montebrasite Formula: LiAl(PO4)(OH) Habit: blocky anhedral Colour: white to pale grey Description: Initially identified as amblygonite, which turns out to be very rare in general. Usually isolated, blocky, subhedral to anhedral crystals found in the cleavelandite-rich quartz-plagioclase intermediate zone. Associated minerals are lepidolite, spodumene, colored tourmaline, quartz and cleavelandite. Some crude crystals, up to 3 inches ore more in diameter, have been collected. Several tons of montebrasite were removed at one time, prior to 1940. George Wilkes reported that five tons were taken out at one time, in the late 1930s, and thrown on the high dump. A fine white cleavage, five inches across, from this discovery, is in the Wesleyan University museum; the back of the specimen shows several contiguous crystal faces. There is also a four inch twinned crystal on display that Dick Schooner collected at the pollucite vein, halfway to the bottom of the pit. Quite a number of good crystals have come from the dumps. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Montmorillonite Formula: (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O Habit: earthy Colour: pink Description: As crumbly, soft, pink masses where spodumene has decomposed. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Cameron, Eugene N., Larrabee, David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338. |
ⓘ Moraesite Formula: Be2(PO4)(OH) · 4H2O Habit: Acicular, encrustations Colour: white Description: Merged sprays of acicular crystals forming a white crust on massive beryl, with hydroxylherderite. Reference: Harold Moritz collection |
ⓘ Morinite ? Formula: NaCa2Al2(PO4)2(OH)F4 · 2H2O Description: Unconfirmed. According to Schooner (circa 1985): "A few masses of Strickland quarry natromontebraesite, from the pollucite zone in the middle eastern wall, halfway down, are composed of intergrown metasomatic or hydrothermal alterations. Pink brazilianite, containing a trace of Mn (analysis by the USGS), is associated with augelite, lacroixite, and hydroxylapatite. This mineral was collected by Charles Thomas, and studied by Mary E. Mrose [USGS]. Ronald E. Januzzi had earlier collected material, on the old dumps, in which the brazilianite occurs as confused white aggregates, with hydroxylapatite and possibly morinite." Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
Muscovite Formula: KAl2(AlSi3O10)(OH)2 Habit: tabular, waxy secondary replacement of gemmy almandine Colour: yellowish-green to pale brown Description: According to Cameron et al (1954), in the albite-quartz-muscovite wall zone muscovite forms books 2 inches to 6 feet broad and ½ to 12 inches thick. These were heavily mined in the early 1940s. Smaller crystals occur in the other zones, except the quartz core. The output of the Schoonmaker mine and Strickland Quarry places the Strickland pegmatite among the most productive mica pegmatites in the country with a total yield estimated at more than 4,500 tons of mine-run mica. Waxy, yellow fine-grained replacement of gemmy almandine (both confirmed by Raman spectroscopy at the University of New Haven) showing included, remnant, etched pieces of the garnet. Reference: Cameron, Eugene N., Larrabee, David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338.;
Sterrett, Douglas B. (1923), Mica Deposits Of The United States, USGS Bulletin 740: 65-67. |
ⓘ Muscovite var: Schernikite Formula: KAl2(AlSi3O10)(OH)2 Habit: parallel-growth fibers with rhombic section Colour: lavender to pink Description: Typically as overgrowths on muscovite, or as micro-crystals in vugs with K-rich albite, cookeite, bertrandite, elbaite, etc. Similar to, but not as well developed, as the overgrowths found at the Gillette Quarry. Reference: Harold Moritz collection |
ⓘ 'Natromontebrasite' Description: Schooner (circa 1985) reports: "A few years ago, John Gillespie did a spectrographic analysis on a sample submitted by the author, finding much Na and hardly any Li. It is quite possible that natromontebrasite was fairly common... A few masses of Strickland quarry natromontebrasite, from the pollucite zone in the middle eastern wall, halfway down, are composed of intergrown metasomatic or hydrothermal alterations. Pink brazilianite, containing a trace of Mn (analysis by the USGS), is associated with augelite, lacroixite, and hydroxylapatite. This mineral was collected by Charles Thomas, and studied by Mary E. Mrose [USGS]." This mineral was discredited in 2007 as a mixture of montebrasite, lacroixite and wardite. Reference: Schooner, Richard. (circa 1985) Untitled manuscript on central Connecticut mineralogy.;
Handbook of Mineralogy (http://www.handbookofmineralogy.org/pdfs/lacroixite.pdf) |
ⓘ Natrophilite Formula: NaMn2+PO4 Habit: elongated subhedral grains Colour: light yellow Description: Subhedral, glassy, elongated grains embedded in lithiophilite. Reference: Harold Moritz collection |
ⓘ Opal Formula: SiO2 · nH2O Habit: coatings, bubbly crusts Colour: colorless to pale green Fluorescence: bright green Description: Typically as thin coatings only easily visible under SW UV light. Minor clear, bubbly crusts occur in secondary mineralizations. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Opal var: Opal-AN Formula: SiO2 · nH2O Habit: coatings, bubbly crusts Colour: colorless to pale green Fluorescence: bright green Description: Typically as thin coatings only easily visible under SW UV light. Minor clear, bubbly crusts occur in secondary mineralizations. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Formula: K(AlSi3O8) Description: Old references often refer to K-feldspar in pegmatites as orthoclase, but Stugard (1958) and Cameron et al (1954) show that it is microcline. Reference: Cameron, Eugene N., Larrabee, David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338.; Stugard, Frederick, Jr. (1958): Pegmatites of the Middletown Area, Connecticut. USGS Bulletin 1042-Q. |
ⓘ Parsonsite Formula: Pb2(UO2)(PO4)2 Habit: alteration of uraninite Description: Schooner (circa 1985) reports: "A soft uraninite alteration, on a Wesleyan University sample from the Strickland quarry, gave the X-ray pattern of parsonsite. The available material was consumed in testing." Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Petalite Formula: LiAl(Si4O10) Habit: granular to cleavable masses Colour: pale grey to white Description: Schooner (1958) says: "sparingly associated with the pollucite which the author discovered at the Strickland Quarry in Portland in l954. It was in the form of glassy white or colorless cleavages and coarsely crystalline aggregates." Later, in Schooner (circa 1985), he elaborates: "Good specimens of white petalite, closely associated with colorless pollucite, were collected deep in the Strickland quarry, in the early 1950s. The author appears to have the only such material. It is usually granular, so the perfect cleavage is not as conspicuous as might be expected. The petalite was verified by X-ray diffraction. Similar petalite has been found on the dumps, intergrown with spodumene; the spodumene may be thoroughly altered to 'pinite', whereas the petalite, being much more stable, is in a fresh condition." Reference: Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Phenakite Formula: Be2SiO4 Habit: striated, slightly etched elongated prisms Colour: colorless Description: Clear crystals to 3 mm in vug in cleavalandite with K-rich albite, bertrandite to 5 mm, quartz and goethite after pyrite. Reference: Robinson, George W. and Vandall T. King. (1988), What's New in Minerals? Mineralogical Record: 19(5): 332.; specimen observations by Harold Moritz. |
ⓘ Phlogopite ? Formula: KMg3(AlSi3O10)(OH)2 Habit: micaceous Colour: dark brown Description: Schooner (1958) speculates that the brown mica in the calc-silicate units in the host Collins Hill Formation is dravite. In Schooner (circa 1985) he writes that "blocks of intergrown dravite and phlogopite have been collected; they came from the pegmatite near its contact with schist". In both cases, analytical data are lacking. Reference: Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Pickeringite Formula: MgAl2(SO4)4 · 22H2O Habit: reniform crusts Colour: white Description: Schooner (1955) says that it "used to be found in magnificent specimens at the small cut above the main part of the Strickland Quarry. Water from the adjacent Schoonmaker shaft, in flowing over a ledge of schist, decomposed the sulphides and mica, producing this hydrosoluble sulphate in limited abundance when the pumping was halted for a while." In Schooner (1958) he elaborates: "At times, especially when water was being drained down over the ledges, the author saw several square feet of rock surface completely covered with reniform pickeringite. Even leaves and twigs, on the ground below, were incrusted. The color was frequently pure white, and the material was solid enough to obtain in sizeable pieces. A peculiar mass, over an inch thick, was found under an overhanging ledge in the principal part of the quarry." Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
'Pinite' Habit: massive, fine-grained alteration of spodumene Colour: grayish shades of green, yellow, purple Description: Multi-colored alteration pseudomorphs after spodumene, with a soapy feel, like serpentine. Schooner (1958) elaborates: "During the active period at the locality, a bewildering array of 'pinite' specimens were encountered. They were of all colors and resembled jade, petrified wood, and other things. Many were perfect pseudomorphs after the original mineral." Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Formula: Al6(PO4)2(HPO4)2(OH)8 · 4 H2O Description: Schooner (circa 1985) writes that "A Boston Mineral Club list of Strickland quarry minerals, dating from about 1940, describes planerite as green crusts on fractured quartz. Several pieces of that material, resembling variscite, were collected at the time; unfortunately, none is now available for study." Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Pollucite Formula: (Cs,Na)2(Al2Si4O12) · 2H2O Habit: massive, granular Colour: colorless to pale grey Description: Schooner (1958) discovered it in l954. "He obtained specimens of glassy material, up to well over a foot across, from a wedge-shaped vein of alkaline minerals which had been exposed by quarrying and subsequently developed by a number of collectors… who threw the pollucite aside, in the belief that it was quartz. The author himself was deceived by this material for a while, even though he had been diligently searching for the mineral in the area. The pollucite, not previously reported from Connecticut, was intimately associated with petalite, spodumene, pink and green tourmaline, amblygonite [montebrasite], cleavelandite, lepidolite, and quartz. Two or three masses had been completely altered to a clay which became waxy on drying, but most of the pollucite was fresh and had a high cesium content." Reference: Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Purpurite Formula: (Mn3+,Fe3+)PO4 Habit: encrustation Colour: purple Description: Rare alteration of lithiophilite. Parent lithiophilite has Mn/Mn + Fe = 0.97 (Moore, 2000). Reference: Moore, P. B. (2000): Analyses of Primary Phosphates from Pegmatites in Maine and Other Localities, in V. T. King (editor), Mineralogy of Maine. Mining History, Gems, and Geology, Maine Geological Survey, Augusta, Maine: 333-336.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
Pyrite Formula: FeS2 Habit: cuboctahedral to pyritohedral, cubic Colour: brassy Description: In the pegmatite, typically as small crystals typically <1/2-inch, commonly with a red hematite patina, in pockets with K-rich albite of the mineralized cleavalandite-quartz intermediate zone, associated with fluorite, calcite, micro-quartz, cookeite, bertrandite. Some altered to goethite. In Alpine-cleft type openings in the host schist of the Collins Hill Formation as aggregates of staggered cubes to 5mm on albite with chlorite and anatase. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.;
Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ ' Formula: A2Nb2(O,OH)6Z Description: Speculation by Schooner. Reference: Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Formula: Mn4+O2 Description: No pyrolusite dendrite or staining in a granite pegmatite in the world has been verified as pyrolusite. The name was a mistake in the nineteenth century which has been widely publicized. See "manganese oxides" for description. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Pyrrhotite Formula: Fe7S8 Habit: massive Colour: reddish metallic Description: Massive concentrations in quartz in the host Collins Hill Formation and as inclusions in diopside in calc-silicate units within. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
Quartz Formula: SiO2 Habit: trigonal prisms Colour: colorless to pale grey, black, light brown, pink, yellow Description: Besides the ubiquitous massive material in all zones, large, distorted and rough pocket crystals, clear to smoky, sometimes gemmy, are known from the quartz-cleavelandite intermediate zone. These crystals are overgrowths on earlier fragmented quartz with "healed" faces and are commonly coated with albite, cookeite or fragments of matrix and included with white, acicular, hollow cavities of a former unknown mineral. Glassy micro-crystals associated with K-rich albite, cookeite, micas, bertrandite in secondary crystallizations. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Cameron, Eugene N., Larrabee, David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Quartz var: Amethyst Formula: SiO2 Habit: scepters Colour: purple Description: As scepter overgrowths on pocket milky quartz crystals. Reference: Alfred Patrie collection |
ⓘ Quartz var: Citrine Formula: SiO2 Description: Schooner (1958): "Citrine, of fine gem quality, was formerly found at the Strickland Quarry, and a few stones were facetted from it... evidently the “topaz” which some people say was taken from there." Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Quartz var: Milky Quartz Formula: SiO2 Habit: elongated prismatic with rhombohedral terminations Colour: white Description: Smaller pocket crystals are often the milky variety. Reference: Harold Moritz collection |
Quartz var: Rock Crystal Formula: SiO2 Habit: large distorted crystals and delicate elongated micro-crystals Colour: colorless Description: Large blocky, distorted crystals that are overgrowths on earlier fragmented quartz can be colorless, though they are typically smoky. In vugs with secondary minerals such as K-rich albite, bertrandite, micas, cookeite, etc., it occurs as delicate, glassy, doubly-terminated microcrystals sometimes in spindly aggregates. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Quartz var: Rose Quartz Formula: SiO2 Habit: massive Colour: rosy Description: Not very common, most rosy material turned out to be morganite beryl. Reference: Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
Quartz var: Smoky Quartz Formula: SiO2 Habit: distorted prismatic crystals typically as overgrowths on earlier fragmented quartz Colour: gray to light brown, black Description: Magnificent clear and smoky crystals, up to at least a foot in length, and almost as broad came from many large pockets. These commonly distorted crystals are mostly overgrowths of earlier fragmented quartz and show complex "healed" faces and inclusions of fragmented bits of albite, and secondary minerals like cookeite, K-rich albite, fluorapatite and and an acicular mineral that later dissolved leaving voids filed by albite and/or cookeite. Much gem material was produced including black cairngorm. Reference: Jarnot, Bruce. (1995): Connecticut Gems and Gem Minerals. Rocks & Minerals: 70(6): 378-382.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Reddingite ? Formula: (Mn2+,Fe2+)3(PO4)2 · 3H2O Habit: micro-crystals Colour: dark red Description: Rare micro-crystals in altered lithiophilite may be this typical alteration product (Schooner, circa 1985). Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Rhodochrosite Formula: MnCO3 Habit: microcrystalline rhombs and scalenohedrons Colour: pale pink to brownish white Description: Granular pink to tan aggregates, with poor crystals in vugs in altered lithiophilite with hureaulite, hydroxylapatite and groutite. Masses up to 4 inches have been reported. Such rhodochrosite grades into siderite. Rarely, little bright pink cleavages have been seen with lithiophilite. An overgrowth on yellow calcite is a unique item. In a single instance, 1/8 inch euhedral deep pink crystals were found in a vug of albite. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Formula: Mn2+SiO3 Description: Turned out to be lithiophilite. Reference: Foye, Wilbur G. (1919): A New Occurrence of Rhodonite. American Mineralogist: 4(10): 124. |
ⓘ 'Rubellite' Formula: A(D3)G6(T6O18)(BO3)3X3Z Habit: elongated, striated prisms Colour: pink to rosy Fluorescence: blue Description: Pink to rosy variety of elbaite, usually pastel, commonly fragmented and etched and associated with K-rich albite, cookeite, quartz in the cleavelandite-quartz intermediate zone. Pink cores of some concentrially-zoned "watermelon" tourmaline fluoresce blue. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Rutile Formula: TiO2 Habit: massive Colour: very dark red-brown Description: Massive grains in almandine coticule found in the host metamorphic rocks around the pegmatite. Micro grains as an accessory in these rock. Raman spectroscopy confirmation by Paul Bartholomew, U. New Haven. Also small crystalline masses scattered in magnesio-hornblende and grossular calc-silicate rock from the host Collins Hill Formation. Reference: Harold Moritz collection; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Samarskite-(Y) ? Formula: (Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8 Description: Schooner says it has been "reported" but details and specimens lacking. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ 'Scapolite' ? Habit: massive Colour: white Description: A likely component of the calc-silicate units of the host Collins Hill Formation, but not confirmed. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Scheelite Formula: Ca(WO4) Habit: tiny grains Fluorescence: bright bue-white Description: Schooner says he found it as tiny fluorescing specks in granular orange-fluorescing "wollastonite" with very tough quartz in the schist which adjoined the pegmatite. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.;
Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
Schorl Formula: Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH) Habit: elongated prisms Colour: black Description: Typically as large subhedral prisms in pegmatite matrix and as small scattered crystals in contacting schist. Can reach several inches in cross-section. Some concentrically overgrown by blue-green and olive-green elbaite. Schooner (1958) reports: "Enormous black crystals, occasionally well developed, were encountered in considerable profusion during the operation of the quarry in 1952 and 1953. They were embedded in cleavelandite, with manganapatite and spodumene; the point of origin in the pegmatite was a tunnel, perhaps two hundred feet below the surface." Reference: Cameron, Eugene N., Larrabee, David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338.; Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Scorodite ? Formula: Fe3+AsO4 · 2H2O Habit: encrustation Colour: green Description: Schooner (1955) says "a small piece of badly weathered arsenopyrite had a bright green coating of the mineral". Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Sicklerite Formula: Li1-x(Mn3+xMn2+1-x)PO4 Habit: crusts Colour: brown Description: Thin brown crust on altered lithiophilite with hureaulite and hydroxylapatite. Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Siderite Formula: FeCO3 Habit: curved rhombohedra Colour: tan Description: Microscopic crystals with fluorite and analcime, SEM-EDS analysis shows some Mn impurity. This is consistent with Schooner's claim that rhodochrosite from altered lithiophilite grades into siderite. Reference: Schooner, Richard. (1955), 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Harold Moritz collection |
ⓘ Spessartine Formula: Mn2+3Al2(SiO4)3 Habit: massive to trapezohedral Colour: orange-red Description: 2017 SEM-EDS analysis of an orange-red crystal in fine-grained greenish muscovite confirms the identification. Orange colored crystals are likely spessartine, however, as there is much almandine and likely both a chemical and color gradation between these two species here, each suspected crystal may need analysis to confirm the identification. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Sphalerite Formula: ZnS Habit: cleavable anhedral grains Colour: black to dark yellow-brown Description: Usually cleavable small grains, rarely pocket crystals, in the mineralized cleavelandite-quartz intermediate zone with K-rich albite and other sulfides. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
Spodumene Formula: LiAlSi2O6 Habit: elongated prisms Colour: exterior tan to pale grey, interior white to lavender Fluorescence: lavender-pink in SW, orange-pink in LW Description: Tons of fragmented crystals were in the dumps, many well terminated. Most crystals etched on the exterior to a "woody" appearance, some crystals altered to pinite. The interior of good crystals is white to lavender and translucent with some rare gem material. Schooner (1958) says that "Rather large crystals, a yard long and a foot wide, were abundant when the locality was active. During the last period of operation, in l954, a great deal of the mineral was uncovered in the lower east wall of the main pit. Part of a wedge-shaped vein of lithium minerals was composed of virtually solid white spodumene. Green and lavender material was also present there, associated with pollucite, amblygonite, lepidolite, and cleavelandite. Most of the green and some of the pink has a good orange fluorescence and a vivid and long sustained orange phosphorescence under short-wave ultra-violet light. Cleavages are still found in the old dumps. Several fine specimens of translucent to semi-transparent light purple kunzite have been secured in recent years." Reference: Cameron, Eugene N., Larrabee, David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338.; Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.;
Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Spodumene var: Kunzite Formula: LiAlSi2O6 Colour: lavender Description: Most spodumene from this pegmatite is not gemmy and much of it is altered or etched to various degrees, although some of the better crystals have translucent, lavender interiors. Reference: Jarnot, Bruce. (1995): Connecticut Gems and Gem Minerals. Rocks & Minerals: 70(6): 378-382. |
ⓘ Spurrite Formula: Ca5(SiO4)2(CO3) Colour: bluish-gray Description: Schooner (circa 1985): "In some of the wollastonite pods at the Strickland quarry, bluish-gray spurrite occurs as very thin layers with grossularite and larnite. X-ray confirmation was obtained from a number of samples. Spurrite also is mixed with the granular wollastonite and its embedded minute gehlenite crystals; only X-ray peaks revealed its presence in that material." Studied by Waldemar T. Schaller of USGS. Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Staurolite Formula: Fe2+2Al9Si4O23(OH) Habit: prismatic Colour: dark brown Description: Thumbnail sized crystals in the Collins Hill Schist west of the pegmatite. Reference: Anthony Albini collection |
ⓘ Stewartite ? Formula: Mn2+Fe3+2(PO4)2(OH)2 · 8H2O Colour: pale yellow Description: According to Schooner (circa 1985) occurs as tiny yellow crystals in altered hureaulite. Specimens of hureaulite from the dump bulldozed in 1984 show small areas of a yellow alteration, possibly stewartite. So far an SEM-EDS analysis (2017) of yellow grains in lithiophilite have proven to be natrophilite. Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ 'Stilbite subgroup' Habit: elongated tabular micro-crystals Colour: yellow Reference: Anthony Albini collection |
ⓘ Sulphur Formula: S8 Habit: efflorescence on pyrite or pyrrhotite Description: Schooner (1958): "as a powdery incrustation on decomposing pyrite and pyrrhotite. A bottled specimen from the Strickland Quarry in Portland, in the author’s collection, shows a piece of albite and drusy pyrite coated with microcrystallized yellow sulfur and fragile gray melanterite efflorescences." Reference: Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
Tantalite-(Mn) Formula: Mn2+Ta2O6 Habit: elongated to tabular prisms Colour: deep maroon with iridescence Description: Usually as small (<1") but well-formed crystals in the mineralized part of the cleavelandite-quartz intermediate zone. Schooner (1958) reports: "W. G. Foye reported [it] in 1929. An analysis of such material, made for Ronald Januzzi, showed the manganese oxide content to be 13.96%. Many rich specimens have been found on the old dumps. The author obtained several superb examples at the vein of lithium minerals in the bottom of the quarry, in 1954. Half inch crystals, and larger masses, were embedded in a matrix of cleavelandite and amblygonite [montebrasite]. The material showed a gradation from dark brown to bright red... the latter nearly transparent and of great beauty. Some was iridescent. The luster was resinous and the manganotantalite exhibited a perfect parting which gave it a micaceous appearance." Some more brown crystals have later proven to be wodginite. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Titanite Formula: CaTi(SiO4)O Habit: micro-crystals Colour: brown Description: Minor accessory in the calc-silicate units of the host Collins Hill Formation. Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Topaz Formula: Al2(SiO4)(F,OH)2 Colour: white Description: At least one recognizable crystal about 5 cm long was collected by Richard Schooner. Confirmed by Bruce Jarnot, Anthony Albini, and Harold Moritz. Schooner (1958) states that: "There have been reports of topaz...but most evidently refer to the gem quality citrine quartz (the 'topaz' of commerce) which was produced many years ago. Nevertheless, John Tweedy, former operator of the locality, told the author that his company geologist had identified the mineral there in 1953." Later, in Schooner (circa 1985) he says: "Topaz was supposedly verified from the Strickland quarry, at Yale University, a decade ago. It must be quite rare." Reference: Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
'Tourmaline' Formula: A(D3)G6(T6O18)(BO3)3X3Z Habit: elongated prisms, acicular, capillary, asbestiform Colour: black, greens, blue, pink, lavender, gray, white Fluorescence: pink variety fluoresces blue Description: See descriptions of elbaite, foitite, and schorl for details. In the mineralized portion of the cleavelandite-quartz intermediate zone, associated with much K-rich albite and elbaite, occurs much secondary acicular to capillary tourmaline, some of it forming asbestiform mats. Some of it has distinct color and is likely elbaite, but much is white to black and could be other species. Analyses are lacking. Reference: Cameron, Eugene N., Larrabee, David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338.; Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Tremolite Formula: ☐{Ca2}{Mg5}(Si8O22)(OH)2 Habit: needles Colour: white Description: Microcrystals in voids in amphibolite with adularia. Reference: Former Ronald Januzzi collection |
ⓘ Triplite Formula: (Mn2+,Fe2+)2(PO4)(F,OH) Habit: irregular massive nodules Colour: red-brown Description: Schooner (circa 1985) reports: "Rich specimens, some dark red, garnet-like, with a conchoidal fracture, up to an inch across, were collected by the author on the old dump bulldozed in 1984. X-ray study confirmed the identity. Some of the triplite is altered to hureaulite, occurring as vugs of tiny crystals. It may be surrounded by white or tan fluorapatite, very fine-grained." Reference: Palache, C., Berman, H., & Frondel, C. (1951): The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 667, 851.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
Uraninite Formula: UO2 Habit: octahedral to irregular grains Colour: black Description: Easily identified by its association with colorful secondary mineralization. Schooner (1955) states that: "crystals, of excellent form, ranging up to a quarter of an inch in diameter were obtained from near the surface of Collins Hill, during the early years [around 1920] of the Strickland Quarry. Wesleyan University, in neighboring Middletown, has many fine specimens. The crystals are octahedral, with cubic modifications." See http://www.mindat.org/photo-626775.html. Columbite-(Fe) and sphalerite were associated. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Uranophane Formula: Ca(UO2)2(SiO3OH)2 · 5H2O Habit: earthy crust Colour: yellow Description: Alteration of uraninite found in contact with it and immediately around it. Associated with hard to see but very fluorescent meta-autunite found a bit further out from the uraninite. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ 'Verdelite' Formula: A(D3)G6(T6O18)(BO3)3X3Z Colour: green Description: See elbaite for details. |
ⓘ Vesuvianite ? Formula: (Ca,Na,☐)19(Al,Mg,Fe3+)13(☐,B,Al,Fe3+)5(Si2O7)4(SiO4)10(OH,F,O)10 Colour: brown Description: Possible component of the calc-silicate units in the host Collins Hill Formation. A single tiny brown potential vesuvianite crystal was noted on a wollastonite(?) specimen. Reference: Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Vivianite ? Formula: Fe2+3(PO4)2 · 8H2O Habit: thin film Colour: blue Description: Reported as thin blue films on weathered lithiophilite. This is unlikely given the absence of Fe in that mineral here. Lithiophilite is commonly associated with blue elbaite here, which could be mistaken for vivianite. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Wardite Formula: NaAl3(PO4)2(OH)4 · 2H2O Description: Schooner (circa 1985) reports that "Wardite and wavellite occurred in a fine-grained replacement of natromontebrasite from the Strickland quarry. The rest of the sample was quartz. X-ray study revealed their existence." Natromontebrasite was discredited in 2007 as a mixture of wardite, montebrasite and lacroixite, which were all documented here by the study Schooner mentions. Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
Wodginite Formula: Mn2+Sn4+Ta2O8 Habit: tapered, elongated prisms Colour: dark brown Description: Fantastic tapered crystals, 2 to 6 cm long, translucent and sometimes showing a little iridescence. Typically in cleavelandite, associated with cassiterite, foitite grading into elbaite, gobbinsite and quartz. Long misidentified as cassiterite or tantalite-(Mn) and too bad as it was not "discovered" until 1963 in Canada and Australia. Strickland could have been the type locality had it been recognized as a new mineral when the quarry was active.
Schooner (circa 1985) summarizes its identification:
A decade ago, the author found a loose 4 inch mass of montebrasite, studded with sharply formed little dark brown crystals, on one of the Strickland quarry dumps. These were tentatively classified as manganotantalite, despite visual differences. The X-ray pattern was later rechecked, with wodginite in mind, and the fit was close enough to warrant a spectrographic test, which showed the presence of tin. Pete J. Dunn and Peter Cerny have since made probe studies of the material. The original mass was broken into several rich specimens. The wodginite is in equant crystals, transparent under magnification, with a few little tabular amber crystals of manganotantalite. This material obviously represented only part of a concentration of wodginite in montebrasite. Several years ago, Bruce Jarnot encountered a small cleavelandite boulder, on the long narrow dump along the western edge of the hill, yielding maybe a dozen superb thumbnails of sharp, euhedral, reddish-black wodginite crystals, of a pyramidal aspect, up to almost an inch. These, too, were thought to be manganotantalite, until X-ray study proved them to be wodginite. At that point, the author became suspicious of an iridescent brown mineral, embedded in columnar green elbaite, collected around 1950. The X-ray pattern shows it to be wodginite, in yet another habit. Obviously, the mineral has been mistaken for other things! Reference: Jarnot, Bruce M. (2011): Letters: Connecticut Update. Rocks & Minerals: 86(4): 299.;
Jarnot, Bruce. (1989): Minerals New to the Portland Area Pegmatites of Central Connecticut. Abstract from the 16th Rochester Mineralogical Symposium April 7, 1989, in Rocks & Minerals: 64(12): 471.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Wollastonite Formula: CaSiO3 Habit: granular, bladed Colour: white Fluorescence: orange Description: Found by Schooner in 1953 and 1954, and reported in Schooner (1955):
"It is pure white in color, and granular massive in form. Fairly large pieces were obtained from the cores of lenticular quartz-actinolite-grossularite-diopside "horses" [pods] in biotite schist, from near the pegmatite. The mineral is photosensitive, turning brown and ugly if exposed to sunlight for very long. It is faintly fluorescent, in a pale orange tint, and strongly phosphorescent, in a brighter shade of the same color, under short-wave ultra-violet radiations".
In Schooner (1958) there is more information: "W. T. Schaller, of the U. S. Geological Survey, made an optical study of this wollastonite, to determine its manganese content through a correlation with the refractive index…which was 1.632, indicating about one percent of iron and manganese oxides."
Followed by this passage in Schooner (circa 1985): "Waldemar T. Schaller studied samples submitted by the author. The wollastonite, with tiny embedded tan gehlenite crystals, and occasional light yellow crystals of grossularite, occupies the centers of a few pods, surrounded by concentric zones of fine-grained tan grossularite, white quartz, and greenish diopside. Spurrite, larnite, vesuvianite, and calcite are rarely associated. Spurrite may, indeed, be mixed, granularly, with wollastonite. Small bladed crystals of wollastonite are seen on a few specimens." Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Formula: (Zn,Fe)S Description: Speculation by Schooner. Reference: Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Formula: (Zn,Fe)S Description: Speculation by Schooner. Reference: Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut. |
ⓘ Formula: Y(PO4) Description: Schooner (1955) says that "crystals, up to an inch across were occasionally found at the Strickland Quarry, especially on the Schoonmaker dump, at one time. They were both tabular and prismatic, had a chocolate-brown color, and were associated with tiny columbite crystals in a matrix of discolored cleavelandite."
He gives a similar passage in Schooner (1958) but in Schooner (circa 1985) appears to retract the identification: "No specimens have been seen by the author. It could easily be confused with zircon, present in so many rocks of the district." It could be that the earlier reports were later identified as wodginite. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.;
Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ 'Zinnwaldite' Habit: micaceous Colour: golden-brown, purplish-grey Description: Found in the cleavelandite-quartz intermediate zone. Schooner (circa 1985) reports that "X-ray and spectrographic study, quite recently, have identified rich specimens, consisting of coarse golden-brown aggregates with zoned elbaite-schorl tourmaline. It can also be purplish-gray." Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Zircon Formula: Zr(SiO4) Habit: bipyramids Colour: grey-brown Fluorescence: yellow Description: Small crystals scattered through all zones except the quartz core. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
ⓘ Zircon var: Cyrtolite Formula: Zr[(SiO4),(OH)4] Habit: short prismatic, parallel groups Colour: brown or black Description: Schooner (1955) says that: "crystals are of small size. Parallel groups are often found in cleavelandite and smoky quartz, and other matrices include manganapatite, microcline, lithiophilite, and various mixtures. The crystals have such short prisms that they resemble distorted dodecahedrons, probably being mistaken for opaque garnets by some collectors." The size rarely exceeds 1/4 inch. Reference: Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8. |
ⓘ Zoisite Formula: {Ca2}{Al3}(Si2O7)(SiO4)O(OH) Habit: massive granular Colour: white to gray, pale pink Description: Schooner (circa 1985) gives the best description: "Zoisite is very common in calc-silicate rock and amphibolite at the Strickland quarry. It is usually white or gray, but occasionally pale pink, forming veins through a mixture of hornblende and garnet. A number of samples have been X-rayed. Other associated minerals are ferroaxinite, anorthite, and fassaite. Just outside the western edge of the quarry, at the site of an old powder-shed dugout, much calc-silicate rock is composed mainly of green and brown clinopyroxene, with white zoisite. A few excellent crystals, embedded in quartz, have come from there." Reference: Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy. |
List of minerals arranged by Strunz 10th Edition classification
Group 1 - Elements | |||
---|---|---|---|
ⓘ | Graphite | 1.CB.05a | C |
ⓘ | Sulphur | 1.CC.05 | S8 |
Group 2 - Sulphides and Sulfosalts | |||
ⓘ | Arsenopyrite | 2.EB.20 | FeAsS |
ⓘ | Bismuthinite ? | 2.DB.05 | Bi2S3 |
ⓘ | Chalcopyrite | 2.CB.10a | CuFeS2 |
ⓘ | Galena | 2.CD.10 | PbS |
ⓘ | Greenockite ? | 2.CB.45 | CdS |
ⓘ | Löllingite | 2.EB.15a | FeAs2 |
ⓘ | Molybdenite | 2.EA.30 | MoS2 |
ⓘ | Pyrite | 2.EB.05a | FeS2 |
ⓘ | Pyrrhotite | 2.CC.10 | Fe7S8 |
ⓘ | Sphalerite | 2.CB.05a | ZnS |
ⓘ | Wurtzite ? | 2.CB.45 | (Zn,Fe)S |
ⓘ | var: Voltzite ? | 2.CB.45 | (Zn,Fe)S |
Group 3 - Halides | |||
ⓘ | Fluorite | 3.AB.25 | CaF2 |
Group 4 - Oxides and Hydroxides | |||
ⓘ | Anatase | 4.DD.05 | TiO2 |
ⓘ | Arsenolite ? | 4.CB.50 | As2O3 |
ⓘ | Bismite ? | 4.CB.60 | Bi2O3 |
ⓘ | Cassiterite | 4.DB.05 | SnO2 |
ⓘ | Columbite-(Fe) | 4.DB.35 | Fe2+Nb2O6 |
ⓘ | Euxenite-(Y) ? | 4.DG.05 | (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6 |
ⓘ | Gahnite ? | 4.BB.05 | ZnAl2O4 |
ⓘ | Goethite | 4.00. | α-Fe3+O(OH) |
ⓘ | Groutite | 4.FD.10 | Mn3+O(OH) |
ⓘ | Hematite | 4.CB.05 | Fe2O3 |
ⓘ | Ilmenite ? | 4.CB.05 | Fe2+TiO3 |
ⓘ | Magnetite | 4.BB.05 | Fe2+Fe3+2O4 |
ⓘ | Manganite ? | 4.FD.15 | Mn3+O(OH) |
ⓘ | 'Microlite Group' | 4.00. | A2-mTa2X6-wZ-n |
ⓘ | Opal | 4.DA.10 | SiO2 · nH2O |
ⓘ | var: Opal-AN | 4.DA.10 | SiO2 · nH2O |
ⓘ | 'Pyrochlore Group' ? | 4.00. | A2Nb2(O,OH)6Z |
ⓘ | Pyrolusite ? | 4.DB.05 | Mn4+O2 |
ⓘ | Quartz | 4.DA.05 | SiO2 |
ⓘ | var: Amethyst | 4.DA.05 | SiO2 |
ⓘ | var: Citrine | 4.DA.05 | SiO2 |
ⓘ | var: Milky Quartz | 4.DA.05 | SiO2 |
ⓘ | var: Rock Crystal | 4.DA.05 | SiO2 |
ⓘ | var: Rose Quartz | 4.DA.05 | SiO2 |
ⓘ | var: Smoky Quartz | 4.DA.05 | SiO2 |
ⓘ | Rutile | 4.DB.05 | TiO2 |
ⓘ | Samarskite-(Y) ? | 4.DB.25 | (Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8 |
ⓘ | Tantalite-(Mn) | 4.DB.35 | Mn2+Ta2O6 |
ⓘ | Uraninite | 4.DL.05 | UO2 |
ⓘ | Wodginite | 4.DB.40 | Mn2+Sn4+Ta2O8 |
Group 5 - Nitrates and Carbonates | |||
ⓘ | Aragonite | 5.AB.15 | CaCO3 |
ⓘ | Bismutite ? | 5.BE.25 | (BiO)2CO3 |
ⓘ | Calcite | 5.AB.05 | CaCO3 |
ⓘ | Rhodochrosite | 5.AB.05 | MnCO3 |
ⓘ | Siderite | 5.AB.05 | FeCO3 |
Group 7 - Sulphates, Chromates, Molybdates and Tungstates | |||
ⓘ | Anglesite ? | 7.AD.35 | PbSO4 |
ⓘ | Epsomite | 7.CB.40 | MgSO4 · 7H2O |
ⓘ | Goslarite ? | 7.CB.40 | ZnSO4 · 7H2O |
ⓘ | Gypsum | 7.CD.40 | CaSO4 · 2H2O |
ⓘ | Melanterite | 7.CB.35 | Fe2+(H2O)6SO4 · H2O |
ⓘ | Pickeringite | 7.CB.85 | MgAl2(SO4)4 · 22H2O |
ⓘ | Scheelite | 7.GA.05 | Ca(WO4) |
Group 8 - Phosphates, Arsenates and Vanadates | |||
ⓘ | Amblygonite ? | 8.BB.05 | LiAl(PO4)F |
ⓘ | Augelite | 8.BE.05 | Al2(PO4)(OH)3 |
ⓘ | Autunite | 8.EB.05 | Ca(UO2)2(PO4)2 · 11H2O |
ⓘ | Brazilianite | 8.BK.05 | NaAl3(PO4)2(OH)4 |
ⓘ | Crandallite ? | 8.BL.10 | CaAl3(PO4)(PO3OH)(OH)6 |
ⓘ | Dickinsonite-(KMnNa) | 8.BF.05 | {KNa}{Mn2+◻}{Ca}{Na3}{Mn2+13}{Al}(PO4)12(OH)2 |
ⓘ | Eosphorite | 8.DD.20 | Mn2+Al(PO4)(OH)2 · H2O |
ⓘ | Fairfieldite | 8.CG.05 | Ca2Mn2+(PO4)2 · 2H2O |
ⓘ | Fluorapatite | 8.BN.05 | Ca5(PO4)3F |
ⓘ | var: Mn-bearing Fluorapatite | 8.BN.05 | (Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH) |
ⓘ | Hureaulite | 8.CB.10 | (Mn,Fe)5(PO4)2(HPO4)2 · 4H2O |
ⓘ | Hydroxylapatite | 8.BN.05 | Ca5(PO4)3(OH) |
ⓘ | Hydroxylherderite | 8.BA.10 | CaBe(PO4)(OH,F) |
ⓘ | Lacroixite | 8.BH.10 | NaAl(PO4)F |
ⓘ | Lithiophilite | 8.AB.10 | LiMn2+PO4 |
ⓘ | Meta-autunite | 8.EB.10 | Ca(UO2)2(PO4)2 · 6-8H2O |
ⓘ | Metatorbernite ? | 8.EB.10 | Cu(UO2)2(PO4)2 · 8H2O |
ⓘ | Mitridatite | 8.DH.30 | Ca2Fe3+3(PO4)3O2 · 3H2O |
ⓘ | Monazite-(Ce) | 8.AD.50 | Ce(PO4) |
ⓘ | Montebrasite | 8.BB.05 | LiAl(PO4)(OH) |
ⓘ | Moraesite | 8.DA.05 | Be2(PO4)(OH) · 4H2O |
ⓘ | Morinite ? | 8.DM.05 | NaCa2Al2(PO4)2(OH)F4 · 2H2O |
ⓘ | Natrophilite | 8.AB.10 | NaMn2+PO4 |
ⓘ | Parsonsite | 8.EA.10 | Pb2(UO2)(PO4)2 |
ⓘ | Planerite ? | 8.DD.15 | Al6(PO4)2(HPO4)2(OH)8 · 4 H2O |
ⓘ | Purpurite | 8.AB.10 | (Mn3+,Fe3+)PO4 |
ⓘ | Reddingite ? | 8.CC.05 | (Mn2+,Fe2+)3(PO4)2 · 3H2O |
ⓘ | Scorodite ? | 8.CD.10 | Fe3+AsO4 · 2H2O |
ⓘ | Sicklerite | 8.AB.10 | Li1-x(Mn3+xMn2+1-x)PO4 |
ⓘ | Stewartite ? | 8.DC.30 | Mn2+Fe3+2(PO4)2(OH)2 · 8H2O |
ⓘ | Triplite | 8.BB.10 | (Mn2+,Fe2+)2(PO4)(F,OH) |
ⓘ | Vivianite ? | 8.CE.40 | Fe2+3(PO4)2 · 8H2O |
ⓘ | Wardite | 8.DL.10 | NaAl3(PO4)2(OH)4 · 2H2O |
ⓘ | Xenotime-(Y) ? | 8.AD.35 | Y(PO4) |
Group 9 - Silicates | |||
ⓘ | Actinolite ? | 9.DE.10 | ☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2 |
ⓘ | Albite | 9.FA.35 | Na(AlSi3O8) |
ⓘ | var: Cleavelandite | 9.FA.35 | Na(AlSi3O8) |
ⓘ | var: Oligoclase | 9.FA.35 | (Na,Ca)[Al(Si,Al)Si2O8] |
ⓘ | Allanite-(Ce) ? | 9.BG.05b | {CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH) |
ⓘ | Almandine | 9.AD.25 | Fe2+3Al2(SiO4)3 |
ⓘ | Analcime | 9.GB.05 | Na(AlSi2O6) · H2O |
ⓘ | Annite | 9.EC.20 | KFe2+3(AlSi3O10)(OH)2 |
ⓘ | Anorthite | 9.FA.35 | Ca(Al2Si2O8) |
ⓘ | Augite | 9.DA.15 | (CaxMgyFez)(Mgy1Fez1)Si2O6 |
ⓘ | var: Fassaite | 9.DA.15 | (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6] |
ⓘ | Bavenite | 9.DF.25 | Ca4Be2Al2Si9O26(OH)2 |
ⓘ | Bazzite | 9.CJ.05 | Be3Sc2(Si6O18) |
ⓘ | Bertrandite | 9.BD.05 | Be4(Si2O7)(OH)2 |
ⓘ | Beryl | 9.CJ.05 | Be3Al2(Si6O18) |
ⓘ | var: Aquamarine | 9.CJ.05 | Be3Al2Si6O18 |
ⓘ | var: Heliodor | 9.CJ.05 | Be3Al2(Si6O18) |
ⓘ | var: Morganite | 9.CJ.05 | Be3Al2(Si6O18) |
ⓘ | Bityite | 9.EC.35 | LiCaAl2(AlBeSi2O10)(OH)2 |
ⓘ | Chrysotile ? | 9.ED.15 | Mg3(Si2O5)(OH)4 |
ⓘ | Clinozoisite | 9.BG.05a | {Ca2}{Al3}(Si2O7)(SiO4)O(OH) |
ⓘ | Cookeite | 9.EC.55 | (Al2Li)Al2(AlSi3O10)(OH)8 |
ⓘ | Cordierite | 9.CJ.10 | (Mg,Fe)2Al3(AlSi5O18) |
ⓘ | Diopside | 9.DA.15 | CaMgSi2O6 |
ⓘ | Elbaite | 9.CK.05 | Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH) |
ⓘ | Eucryptite ? | 9.AA.05 | LiAlSiO4 |
ⓘ | Foitite | 9.CK.05 | (□,Na)(Fe2+2Al)Al6(Si6O18)(BO3)3(OH)3OH |
ⓘ | Gehlenite | 9.BB.10 | Ca2Al(AlSiO7) |
ⓘ | Gobbinsite | 9.GC.05 | Na5(Si11Al5)O32 · 11H2O |
ⓘ | Grossular | 9.AD.25 | Ca3Al2(SiO4)3 |
ⓘ | 'Halloysite' ? | 9.ED.10 | Al2(Si2O5)(OH)4 |
ⓘ | Kaolinite | 9.ED.05 | Al2(Si2O5)(OH)4 |
ⓘ | Kyanite | 9.AF.15 | Al2(SiO4)O |
ⓘ | Larnite | 9.AD.05 | Ca2SiO4 |
ⓘ | Magnesio-hornblende | 9.DE.10 | ☐{Ca2}{Mg4Al}(AlSi7O22)(OH)2 |
ⓘ | Masutomilite | 9.EC.20 | (K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2 |
ⓘ | Microcline | 9.FA.30 | K(AlSi3O8) |
ⓘ | Montmorillonite | 9.EC.40 | (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O |
ⓘ | Muscovite | 9.EC.15 | KAl2(AlSi3O10)(OH)2 |
ⓘ | var: Schernikite | 9.EC.15 | KAl2(AlSi3O10)(OH)2 |
ⓘ | Orthoclase ? | 9.FA.30 | K(AlSi3O8) |
ⓘ | Petalite | 9.EF.05 | LiAl(Si4O10) |
ⓘ | Phenakite | 9.AA.05 | Be2SiO4 |
ⓘ | Phlogopite ? | 9.EC.20 | KMg3(AlSi3O10)(OH)2 |
ⓘ | Pollucite | 9.GB.05 | (Cs,Na)2(Al2Si4O12) · 2H2O |
ⓘ | Rhodonite ? | 9.DK.05 | Mn2+SiO3 |
ⓘ | Schorl | 9.CK.05 | Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH) |
ⓘ | Spessartine | 9.AD.25 | Mn2+3Al2(SiO4)3 |
ⓘ | Spodumene | 9.DA.30 | LiAlSi2O6 |
ⓘ | var: Kunzite | 9.DA.30 | LiAlSi2O6 |
ⓘ | Spurrite | 9.AH.15 | Ca5(SiO4)2(CO3) |
ⓘ | Staurolite | 9.AF.30 | Fe2+2Al9Si4O23(OH) |
ⓘ | Titanite | 9.AG.15 | CaTi(SiO4)O |
ⓘ | Topaz | 9.AF.35 | Al2(SiO4)(F,OH)2 |
ⓘ | Tremolite | 9.DE.10 | ☐{Ca2}{Mg5}(Si8O22)(OH)2 |
ⓘ | Uranophane | 9.AK.15 | Ca(UO2)2(SiO3OH)2 · 5H2O |
ⓘ | Vesuvianite ? | 9.BG.35 | (Ca,Na,☐)19(Al,Mg,Fe3+)13(☐,B,Al,Fe3+)5(Si2O7)4(SiO4)10(OH,F,O)10 |
ⓘ | Wollastonite | 9.DG.05 | CaSiO3 |
ⓘ | Zircon | 9.AD.30 | Zr(SiO4) |
ⓘ | var: Cyrtolite | 9.AD.30 | Zr[(SiO4),(OH)4] |
ⓘ | Zoisite | 9.BG.10 | {Ca2}{Al3}(Si2O7)(SiO4)O(OH) |
Unclassified Minerals, Rocks, etc. | |||
ⓘ | 'Apatite' | - | |
ⓘ | 'Chlorite Group' | - | |
ⓘ | 'K Feldspar' | - | |
ⓘ | 'var: Adularia' | - | KAlSi3O8 |
ⓘ | 'Lepidolite' | - | |
ⓘ | 'Limonite' | - | (Fe,O,OH,H2O) |
ⓘ | 'Manganese Oxides' | - | |
ⓘ | 'var: Manganese Dendrites' | - | |
ⓘ | 'Natromontebrasite' | - | |
ⓘ | 'Pinite' | - | |
ⓘ | 'Rubellite' | - | A(D3)G6(T6O18)(BO3)3X3Z |
ⓘ | 'Scapolite' ? | - | |
ⓘ | 'Stilbite subgroup' | - | |
ⓘ | 'Tourmaline' | - | A(D3)G6(T6O18)(BO3)3X3Z |
ⓘ | 'Verdelite' | - | A(D3)G6(T6O18)(BO3)3X3Z |
ⓘ | 'Zinnwaldite' | - |
List of minerals arranged by Dana 8th Edition classification
Group 1 - NATIVE ELEMENTS AND ALLOYS | |||
---|---|---|---|
Semi-metals and non-metals | |||
ⓘ | Graphite | 1.3.6.2 | C |
ⓘ | Sulphur | 1.3.5.1 | S8 |
Group 2 - SULFIDES | |||
AmXp, with m:p = 1:1 | |||
ⓘ | Galena | 2.8.1.1 | PbS |
ⓘ | Greenockite ? | 2.8.7.2 | CdS |
ⓘ | Pyrrhotite | 2.8.10.1 | Fe7S8 |
ⓘ | Sphalerite | 2.8.2.1 | ZnS |
ⓘ | Wurtzite ? | 2.8.7.1 | (Zn,Fe)S |
AmBnXp, with (m+n):p = 1:1 | |||
ⓘ | Chalcopyrite | 2.9.1.1 | CuFeS2 |
AmBnXp, with (m+n):p = 2:3 | |||
ⓘ | Bismuthinite ? | 2.11.2.3 | Bi2S3 |
AmBnXp, with (m+n):p = 1:2 | |||
ⓘ | Arsenopyrite | 2.12.4.1 | FeAsS |
ⓘ | Löllingite | 2.12.2.9 | FeAs2 |
ⓘ | Molybdenite | 2.12.10.1 | MoS2 |
ⓘ | Pyrite | 2.12.1.1 | FeS2 |
Group 4 - SIMPLE OXIDES | |||
A2X3 | |||
ⓘ | Arsenolite ? | 4.3.9.1 | As2O3 |
ⓘ | Bismite ? | 4.3.10.2 | Bi2O3 |
ⓘ | Hematite | 4.3.1.2 | Fe2O3 |
ⓘ | Ilmenite ? | 4.3.5.1 | Fe2+TiO3 |
AX2 | |||
ⓘ | Anatase | 4.4.4.1 | TiO2 |
ⓘ | Cassiterite | 4.4.1.5 | SnO2 |
ⓘ | Pyrolusite ? | 4.4.1.4 | Mn4+O2 |
ⓘ | Rutile | 4.4.1.1 | TiO2 |
Group 5 - OXIDES CONTAINING URANIUM OR THORIUM | |||
AXO2·xH2O | |||
ⓘ | Uraninite | 5.1.1.1 | UO2 |
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL | |||
XO(OH) | |||
ⓘ | Goethite | 6.1.1.2 | α-Fe3+O(OH) |
ⓘ | Groutite | 6.1.1.3 | Mn3+O(OH) |
ⓘ | Manganite ? | 6.1.3.1 | Mn3+O(OH) |
Group 7 - MULTIPLE OXIDES | |||
AB2X4 | |||
ⓘ | Gahnite ? | 7.2.1.4 | ZnAl2O4 |
ⓘ | Magnetite | 7.2.2.3 | Fe2+Fe3+2O4 |
Group 8 - MULTIPLE OXIDES CONTAINING NIOBIUM,TANTALUM OR TITANIUM | |||
ABO4 | |||
ⓘ | Samarskite-(Y) ? | 8.1.11.1 | (Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8 |
ⓘ | Wodginite | 8.1.8.1 | Mn2+Sn4+Ta2O8 |
A2B2O6(O,OH,F) | |||
ⓘ | 'Microlite Group' | 8.2.2.1 | A2-mTa2X6-wZ-n |
ⓘ | 'Pyrochlore Group' ? | 8.2.1.1 | A2Nb2(O,OH)6Z |
AB2O6 | |||
ⓘ | Columbite-(Fe) | 8.3.2.2 | Fe2+Nb2O6 |
ⓘ | Euxenite-(Y) ? | 8.3.8.2 | (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6 |
ⓘ | Tantalite-(Mn) | 8.3.2.3 | Mn2+Ta2O6 |
Group 9 - NORMAL HALIDES | |||
AX2 | |||
ⓘ | Fluorite | 9.2.1.1 | CaF2 |
Group 14 - ANHYDROUS NORMAL CARBONATES | |||
A(XO3) | |||
ⓘ | Calcite | 14.1.1.1 | CaCO3 |
ⓘ | Rhodochrosite | 14.1.1.4 | MnCO3 |
ⓘ | Siderite | 14.1.1.3 | FeCO3 |
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN | |||
ⓘ | Bismutite ? | 16a.3.5.1 | (BiO)2CO3 |
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES | |||
AXO4 | |||
ⓘ | Anglesite ? | 28.3.1.3 | PbSO4 |
Group 29 - HYDRATED ACID AND NORMAL SULFATES | |||
AXO4·xH2O | |||
ⓘ | Epsomite | 29.6.11.1 | MgSO4 · 7H2O |
ⓘ | Goslarite ? | 29.6.11.2 | ZnSO4 · 7H2O |
ⓘ | Gypsum | 29.6.3.1 | CaSO4 · 2H2O |
ⓘ | Melanterite | 29.6.10.1 | Fe2+(H2O)6SO4 · H2O |
AB2(XO4)4·H2O | |||
ⓘ | Pickeringite | 29.7.3.1 | MgAl2(SO4)4 · 22H2O |
Group 38 - ANHYDROUS NORMAL PHOSPHATES, ARSENATES, AND VANADATES | |||
ABXO4 | |||
ⓘ | Lithiophilite | 38.1.1.2 | LiMn2+PO4 |
ⓘ | Natrophilite | 38.1.1.3 | NaMn2+PO4 |
ⓘ | Sicklerite | 38.1.4.2 | Li1-x(Mn3+xMn2+1-x)PO4 |
AXO4 | |||
ⓘ | Monazite-(Ce) | 38.4.3.1 | Ce(PO4) |
ⓘ | Purpurite | 38.4.1.2 | (Mn3+,Fe3+)PO4 |
Group 39 - HYDRATED ACID PHOSPHATES,ARSENATES AND VANADATES | |||
(AB)5[HXO4]2[XO4]2.xH2O | |||
ⓘ | Hureaulite | 39.2.1.1 | (Mn,Fe)5(PO4)2(HPO4)2 · 4H2O |
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES | |||
AB2(XO4)2·xH2O, containing (UO2)2+ | |||
ⓘ | Autunite | 40.2a.1.1 | Ca(UO2)2(PO4)2 · 11H2O |
ⓘ | Fairfieldite | 40.2.2.1 | Ca2Mn2+(PO4)2 · 2H2O |
ⓘ | Meta-autunite | 40.2a.1.2 | Ca(UO2)2(PO4)2 · 6-8H2O |
ⓘ | Metatorbernite ? | 40.2a.13.2 | Cu(UO2)2(PO4)2 · 8H2O |
ⓘ | Parsonsite | 40.2a.31.1 | Pb2(UO2)(PO4)2 |
A3(XO4)2·xH2O | |||
ⓘ | Reddingite ? | 40.3.2.3 | (Mn2+,Fe2+)3(PO4)2 · 3H2O |
ⓘ | Vivianite ? | 40.3.6.1 | Fe2+3(PO4)2 · 8H2O |
(AB)5(XO4)2·xH2O | |||
ⓘ | Scorodite ? | 40.4.1.3 | Fe3+AsO4 · 2H2O |
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN | |||
(AB)2(XO4)Zq | |||
ⓘ | Amblygonite ? | 41.5.8.1 | LiAl(PO4)F |
ⓘ | Brazilianite | 41.5.7.1 | NaAl3(PO4)2(OH)4 |
ⓘ | Hydroxylherderite | 41.5.4.2 | CaBe(PO4)(OH,F) |
ⓘ | Lacroixite | 41.5.5.1 | NaAl(PO4)F |
ⓘ | Montebrasite | 41.5.8.2 | LiAl(PO4)(OH) |
ⓘ | 'Natromontebrasite' | 41.5.8.3 | |
A2(XO4)Zq | |||
ⓘ | Augelite | 41.6.8.1 | Al2(PO4)(OH)3 |
ⓘ | Triplite | 41.6.1.2 | (Mn2+,Fe2+)2(PO4)(F,OH) |
(AB)7(XO4)4Zq | |||
ⓘ | Dickinsonite-(KMnNa) | 41.7.2.2 | {KNa}{Mn2+◻}{Ca}{Na3}{Mn2+13}{Al}(PO4)12(OH)2 |
A5(XO4)3Zq | |||
ⓘ | Fluorapatite | 41.8.1.1 | Ca5(PO4)3F |
ⓘ | Hydroxylapatite | 41.8.1.3 | Ca5(PO4)3(OH) |
Group 42 - HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN | |||
(AB)5(XO4)2Zq·xH2O | |||
ⓘ | Morinite ? | 42.4.2.1 | NaCa2Al2(PO4)2(OH)F4 · 2H2O |
A2(XO4)Zq·xH2O | |||
ⓘ | Moraesite | 42.6.1.1 | Be2(PO4)(OH) · 4H2O |
(AB)2(XO4)Zq·xH2O | |||
ⓘ | Crandallite ? | 42.7.3.1 | CaAl3(PO4)(PO3OH)(OH)6 |
ⓘ | Eosphorite | 42.7.1.2 | Mn2+Al(PO4)(OH)2 · H2O |
ⓘ | Wardite | 42.7.8.2 | NaAl3(PO4)2(OH)4 · 2H2O |
(AB)5(XO4)3Zq·xH2O | |||
ⓘ | Mitridatite | 42.8.4.1 | Ca2Fe3+3(PO4)3O2 · 3H2O |
(AB)7(XO4)4Zq·xH2O | |||
ⓘ | Planerite ? | 42.9.3.6 | Al6(PO4)2(HPO4)2(OH)8 · 4 H2O |
(AB)3(XO4)2Zq·xH2O | |||
ⓘ | Stewartite ? | 42.11.10.2 | Mn2+Fe3+2(PO4)2(OH)2 · 8H2O |
Group 48 - ANHYDROUS MOLYBDATES AND TUNGSTATES | |||
AXO4 | |||
ⓘ | Scheelite | 48.1.2.1 | Ca(WO4) |
Group 51 - NESOSILICATES Insular SiO4 Groups Only | |||
Insular SiO4 Groups Only with cations in [4] coordination | |||
ⓘ | Eucryptite ? | 51.1.1.3 | LiAlSiO4 |
ⓘ | Phenakite | 51.1.1.1 | Be2SiO4 |
Insular SiO4 Groups Only with cations in [6] and >[6] coordination | |||
ⓘ | Almandine | 51.4.3a.2 | Fe2+3Al2(SiO4)3 |
ⓘ | Grossular | 51.4.3b.2 | Ca3Al2(SiO4)3 |
ⓘ | Spessartine | 51.4.3a.3 | Mn2+3Al2(SiO4)3 |
Insular SiO4 Groups Only with cations in >[6] coordination | |||
ⓘ | Larnite | 51.5.1.1 | Ca2SiO4 |
ⓘ | Zircon | 51.5.2.1 | Zr(SiO4) |
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O | |||
Insular SiO4 Groups and O, OH, F, and H2O with cations in [4] and >[4] coordination | |||
ⓘ | Kyanite | 52.2.2c.1 | Al2(SiO4)O |
ⓘ | Staurolite | 52.2.3.1 | Fe2+2Al9Si4O23(OH) |
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] coordination only | |||
ⓘ | Topaz | 52.3.1.1 | Al2(SiO4)(F,OH)2 |
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] and/or >[6] coordination | |||
ⓘ | Titanite | 52.4.3.1 | CaTi(SiO4)O |
Group 53 - NESOSILICATES Insular SiO4 Groups and Other Anions or Complex Cations | |||
Insular SiO4 Groups and Other Anions of Complex Cations with (CO3) | |||
ⓘ | Spurrite | 53.1.1.1 | Ca5(SiO4)2(CO3) |
Insular SiO4 Groups and Other Anions of Complex Cations with (UO2) | |||
ⓘ | Uranophane | 53.3.1.2 | Ca(UO2)2(SiO3OH)2 · 5H2O |
Group 55 - SOROSILICATES Si2O7 Groups,Generally with no Additional Anions | |||
Si2O7 Groups, Generally with No Additional Anions with cations in [8] and lower coordination | |||
ⓘ | Gehlenite | 55.4.1.2 | Ca2Al(AlSiO7) |
Group 56 - SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O | |||
Si2O7 Groups and O, OH, F, and H2O with cations in [4] coordination | |||
ⓘ | Bertrandite | 56.1.1.1 | Be4(Si2O7)(OH)2 |
Group 58 - SOROSILICATES Insular, Mixed, Single, and Larger Tetrahedral Groups | |||
Insular, Mixed, Single, and Larger Tetrahedral Groups with cations in [6] and higher coordination; single and double groups (n = 1, 2) | |||
ⓘ | Allanite-(Ce) ? | 58.2.1a.1 | {CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH) |
ⓘ | Clinozoisite | 58.2.1a.4 | {Ca2}{Al3}(Si2O7)(SiO4)O(OH) |
ⓘ | Vesuvianite ? | 58.2.4.1 | (Ca,Na,☐)19(Al,Mg,Fe3+)13(☐,B,Al,Fe3+)5(Si2O7)4(SiO4)10(OH,F,O)10 |
ⓘ | Zoisite | 58.2.1b.1 | {Ca2}{Al3}(Si2O7)(SiO4)O(OH) |
Group 61 - CYCLOSILICATES Six-Membered Rings | |||
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution | |||
ⓘ | Bazzite | 61.1.1.2 | Be3Sc2(Si6O18) |
ⓘ | Beryl | 61.1.1.1 | Be3Al2(Si6O18) |
Six-Membered Rings with Al substituted rings | |||
ⓘ | Cordierite | 61.2.1.1 | (Mg,Fe)2Al3(AlSi5O18) |
Six-Membered Rings with borate groups | |||
ⓘ | Elbaite | 61.3.1.8 | Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH) |
ⓘ | Foitite | 61.3.1.1 | (□,Na)(Fe2+2Al)Al6(Si6O18)(BO3)3(OH)3OH |
ⓘ | Schorl | 61.3.1.10 | Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH) |
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1) | |||
Single-Width Unbranched Chains, W=1 with chains P=2 | |||
ⓘ | Augite | 65.1.3a.3 | (CaxMgyFez)(Mgy1Fez1)Si2O6 |
ⓘ | Diopside | 65.1.3a.1 | CaMgSi2O6 |
ⓘ | Spodumene | 65.1.4.1 | LiAlSi2O6 |
Single-Width Unbranched Chains, W=1 with chains P=3 | |||
ⓘ | Wollastonite | 65.2.1.1c | CaSiO3 |
Single-Width Unbranched Chains, W=1 with chains P=5 | |||
ⓘ | Rhodonite ? | 65.4.1.1 | Mn2+SiO3 |
Group 66 - INOSILICATES Double-Width,Unbranched Chains,(W=2) | |||
Amphiboles - Mg-Fe-Mn-Li subgroup | |||
ⓘ | Tremolite | 66.1.3a.1 | ☐{Ca2}{Mg5}(Si8O22)(OH)2 |
Group 70 - INOSILICATES Column or Tube Structures | |||
Column or Tube Structures with chains linked by Be | |||
ⓘ | Bavenite | 70.5.3.1 | Ca4Be2Al2Si9O26(OH)2 |
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings | |||
Sheets of 6-membered rings with 1:1 layers | |||
ⓘ | Chrysotile ? | 71.1.5.1 | Mg3(Si2O5)(OH)4 |
ⓘ | 'Halloysite' ? | 71.1.1.4 | Al2(Si2O5)(OH)4 |
Sheets of 6-membered rings with 2:1 layers | |||
ⓘ | Annite | 71.2.2b.3 | KFe2+3(AlSi3O10)(OH)2 |
ⓘ | Bityite | 71.2.2c.3 | LiCaAl2(AlBeSi2O10)(OH)2 |
ⓘ | Masutomilite | 71.2.2b.12 | (K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2 |
ⓘ | Muscovite | 71.2.2a.1 | KAl2(AlSi3O10)(OH)2 |
ⓘ | Phlogopite ? | 71.2.2b.1 | KMg3(AlSi3O10)(OH)2 |
Sheets of 6-membered rings with 2:1 clays | |||
ⓘ | Montmorillonite | 71.3.1a.2 | (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O |
Sheets of 6-membered rings interlayered 1:1, 2:1, and octahedra | |||
ⓘ | Cookeite | 71.4.1.2 | (Al2Li)Al2(AlSi3O10)(OH)8 |
Group 72 - PHYLLOSILICATES Two-Dimensional Infinite Sheets with Other Than Six-Membered Rings | |||
Two-Dimensional Infinite Sheets with Other Than Six-Membered Rings with tetrahedral Al cross-linking | |||
ⓘ | Petalite | 72.6.1.1 | LiAl(Si4O10) |
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks | |||
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si | |||
ⓘ | Quartz | 75.1.3.1 | SiO2 |
Si Tetrahedral Frameworks - SiO2 with H2O and organics | |||
ⓘ | Opal | 75.2.1.1 | SiO2 · nH2O |
Group 76 - TECTOSILICATES Al-Si Framework | |||
Al-Si Framework with Al-Si frameworks | |||
ⓘ | Albite | 76.1.3.1 | Na(AlSi3O8) |
ⓘ | Microcline | 76.1.1.5 | K(AlSi3O8) |
ⓘ | Orthoclase ? | 76.1.1.1 | K(AlSi3O8) |
Group 77 - TECTOSILICATES Zeolites | |||
Zeolite group - True zeolites | |||
ⓘ | Analcime | 77.1.1.1 | Na(AlSi2O6) · H2O |
ⓘ | Gobbinsite | 77.1.3.4 | Na5(Si11Al5)O32 · 11H2O |
ⓘ | Pollucite | 77.1.1.2 | (Cs,Na)2(Al2Si4O12) · 2H2O |
Unclassified Minerals, Mixtures, etc. | |||
ⓘ | Actinolite ? | - | ☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2 |
ⓘ | Albite var: Cleavelandite | - | Na(AlSi3O8) |
ⓘ | var: Oligoclase | - | (Na,Ca)[Al(Si,Al)Si2O8] |
ⓘ | Anorthite | - | Ca(Al2Si2O8) |
ⓘ | 'Apatite' | - | |
ⓘ | Aragonite | - | CaCO3 |
ⓘ | Augite var: Fassaite | - | (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6] |
ⓘ | Beryl var: Aquamarine | - | Be3Al2Si6O18 |
ⓘ | var: Heliodor | - | Be3Al2(Si6O18) |
ⓘ | var: Morganite | - | Be3Al2(Si6O18) |
ⓘ | 'Chlorite Group' | - | |
ⓘ | Fluorapatite var: Mn-bearing Fluorapatite | - | (Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH) |
ⓘ | 'K Feldspar' | - | |
ⓘ | 'var: Adularia' | - | KAlSi3O8 |
ⓘ | Kaolinite | - | Al2(Si2O5)(OH)4 |
ⓘ | 'Lepidolite' | - | |
ⓘ | 'Limonite' | - | (Fe,O,OH,H2O) |
ⓘ | Magnesio-hornblende | - | ☐{Ca2}{Mg4Al}(AlSi7O22)(OH)2 |
ⓘ | 'Manganese Oxides' | - | |
ⓘ | 'var: Manganese Dendrites' | - | |
ⓘ | Muscovite var: Schernikite | - | KAl2(AlSi3O10)(OH)2 |
ⓘ | Opal var: Opal-AN | - | SiO2 · nH2O |
ⓘ | 'Pinite' | - | |
ⓘ | Quartz var: Amethyst | - | SiO2 |
ⓘ | var: Citrine | - | SiO2 |
ⓘ | var: Milky Quartz | - | SiO2 |
ⓘ | var: Rock Crystal | - | SiO2 |
ⓘ | var: Rose Quartz | - | SiO2 |
ⓘ | var: Smoky Quartz | - | SiO2 |
ⓘ | 'Rubellite' | - | A(D3)G6(T6O18)(BO3)3X3Z |
ⓘ | 'Scapolite' ? | - | |
ⓘ | Spodumene var: Kunzite | - | LiAlSi2O6 |
ⓘ | 'Stilbite subgroup' | - | |
ⓘ | 'Tourmaline' | - | A(D3)G6(T6O18)(BO3)3X3Z |
ⓘ | 'Verdelite' | - | A(D3)G6(T6O18)(BO3)3X3Z |
ⓘ | Wurtzite var: Voltzite ? | - | (Zn,Fe)S |
ⓘ | Xenotime-(Y) ? | - | Y(PO4) |
ⓘ | 'Zinnwaldite' | - | |
ⓘ | Zircon var: Cyrtolite | - | Zr[(SiO4),(OH)4] |
List of minerals for each chemical element
H | Hydrogen | |
---|---|---|
H | ⓘ Muscovite | KAl2(AlSi3O10)(OH)2 |
H | ⓘ Schorl | Na(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH) |
H | ⓘ Elbaite | Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH) |
H | ⓘ Cookeite | (Al2Li)Al2(AlSi3O10)(OH)8 |
H | ⓘ Bertrandite | Be4(Si2O7)(OH)2 |
H | ⓘ Fluorapatite (var: Mn-bearing Fluorapatite) | (Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH) |
H | ⓘ Analcime | Na(AlSi2O6) · H2O |
H | ⓘ Autunite | Ca(UO2)2(PO4)2 · 11H2O |
H | ⓘ Meta-autunite | Ca(UO2)2(PO4)2 · 6-8H2O |
H | ⓘ Montmorillonite | (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O |
H | ⓘ Bityite | LiCaAl2(AlBeSi2O10)(OH)2 |
H | ⓘ Clinozoisite | {Ca2}{Al3}(Si2O7)(SiO4)O(OH) |
H | ⓘ Zircon (var: Cyrtolite) | Zr[(SiO4),(OH)4] |
H | ⓘ Kaolinite | Al2(Si2O5)(OH)4 |
H | ⓘ Limonite | (Fe,O,OH,H2O) |
H | ⓘ Melanterite | Fe2+(H2O)6SO4 · H2O |
H | ⓘ Pickeringite | MgAl2(SO4)4 · 22H2O |
H | ⓘ Triplite | (Mn2+,Fe2+)2(PO4)(F,OH) |
H | ⓘ Fairfieldite | Ca2Mn2+(PO4)2 · 2H2O |
H | ⓘ Augelite | Al2(PO4)(OH)3 |
H | ⓘ Bavenite | Ca4Be2Al2Si9O26(OH)2 |
H | ⓘ Opal (var: Opal-AN) | SiO2 · nH2O |
H | ⓘ Annite | KFe32+(AlSi3O10)(OH)2 |
H | ⓘ Foitite | (□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH |
H | ⓘ Gobbinsite | Na5(Si11Al5)O32 · 11H2O |
H | ⓘ Parsonsite | Pb2(UO2)(PO4)2 |
H | ⓘ Hydroxylapatite | Ca5(PO4)3(OH) |
H | ⓘ Muscovite (var: Schernikite) | KAl2(AlSi3O10)(OH)2 |
H | ⓘ Masutomilite | (K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2 |
H | ⓘ Staurolite | Fe22+Al9Si4O23(OH) |
H | ⓘ Opal | SiO2 · nH2O |
H | ⓘ Magnesio-hornblende | ☐{Ca2}{Mg4Al}(AlSi7O22)(OH)2 |
H | ⓘ Moraesite | Be2(PO4)(OH) · 4H2O |
H | ⓘ Bazzite | Be3Sc2(Si6O18) |
H | ⓘ Tremolite | ☐{Ca2}{Mg5}(Si8O22)(OH)2 |
H | ⓘ Montebrasite | LiAl(PO4)(OH) |
H | ⓘ Dickinsonite-(KMnNa) | {KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2 |
H | ⓘ Eosphorite | Mn2+Al(PO4)(OH)2 · H2O |
H | ⓘ Epsomite | MgSO4 · 7H2O |
H | ⓘ Goethite | α-Fe3+O(OH) |
H | ⓘ Gypsum | CaSO4 · 2H2O |
H | ⓘ Hureaulite | (Mn,Fe)5(PO4)2(HPO4)2 · 4H2O |
H | ⓘ Pollucite | (Cs,Na)2(Al2Si4O12) · 2H2O |
H | ⓘ Uranophane | Ca(UO2)2(SiO3OH)2 · 5H2O |
H | ⓘ Topaz | Al2(SiO4)(F,OH)2 |
H | ⓘ Wardite | NaAl3(PO4)2(OH)4 · 2H2O |
H | ⓘ Brazilianite | NaAl3(PO4)2(OH)4 |
H | ⓘ Mitridatite | Ca2Fe33+(PO4)3O2 · 3H2O |
H | ⓘ Groutite | Mn3+O(OH) |
H | ⓘ Hydroxylherderite | CaBe(PO4)(OH,F) |
H | ⓘ Zoisite | {Ca2}{Al3}(Si2O7)(SiO4)O(OH) |
H | ⓘ Crandallite | CaAl3(PO4)(PO3OH)(OH)6 |
H | ⓘ Metatorbernite | Cu(UO2)2(PO4)2 · 8H2O |
H | ⓘ Morinite | NaCa2Al2(PO4)2(OH)F4 · 2H2O |
H | ⓘ Actinolite | ☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2 |
H | ⓘ Phlogopite | KMg3(AlSi3O10)(OH)2 |
H | ⓘ Reddingite | (Mn2+,Fe2+)3(PO4)2 · 3H2O |
H | ⓘ Scorodite | Fe3+AsO4 · 2H2O |
H | ⓘ Vivianite | Fe32+(PO4)2 · 8H2O |
H | ⓘ Stewartite | Mn2+Fe23+(PO4)2(OH)2 · 8H2O |
H | ⓘ Goslarite | ZnSO4 · 7H2O |
H | ⓘ Vesuvianite | (Ca,Na,☐)19(Al,Mg,Fe3+)13(☐,B,Al,Fe3+)5(Si2O7)4(SiO4)10(OH,F,O)10 |
H | ⓘ Allanite-(Ce) | {CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH) |
H | ⓘ Pyrochlore Group | A2Nb2(O,OH)6Z |
H | ⓘ Chrysotile | Mg3(Si2O5)(OH)4 |
H | ⓘ Manganite | Mn3+O(OH) |
H | ⓘ Planerite | Al6(PO4)2(HPO4)2(OH)8 · 4 H2O |
H | ⓘ Halloysite | Al2(Si2O5)(OH)4 |
Li | Lithium | |
Li | ⓘ Spodumene | LiAlSi2O6 |
Li | ⓘ Elbaite | Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH) |
Li | ⓘ Cookeite | (Al2Li)Al2(AlSi3O10)(OH)8 |
Li | ⓘ Bityite | LiCaAl2(AlBeSi2O10)(OH)2 |
Li | ⓘ Lithiophilite | LiMn2+PO4 |
Li | ⓘ Masutomilite | (K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2 |
Li | ⓘ Montebrasite | LiAl(PO4)(OH) |
Li | ⓘ Petalite | LiAl(Si4O10) |
Li | ⓘ Spodumene (var: Kunzite) | LiAlSi2O6 |
Li | ⓘ Sicklerite | Li1-x(Mnx3+Mn2+1-x)PO4 |
Li | ⓘ Amblygonite | LiAl(PO4)F |
Li | ⓘ Eucryptite | LiAlSiO4 |
Be | Beryllium | |
Be | ⓘ Beryl | Be3Al2(Si6O18) |
Be | ⓘ Bertrandite | Be4(Si2O7)(OH)2 |
Be | ⓘ Beryl (var: Morganite) | Be3Al2(Si6O18) |
Be | ⓘ Beryl (var: Aquamarine) | Be3Al2Si6O18 |
Be | ⓘ Bityite | LiCaAl2(AlBeSi2O10)(OH)2 |
Be | ⓘ Bavenite | Ca4Be2Al2Si9O26(OH)2 |
Be | ⓘ Beryl (var: Heliodor) | Be3Al2(Si6O18) |
Be | ⓘ Moraesite | Be2(PO4)(OH) · 4H2O |
Be | ⓘ Bazzite | Be3Sc2(Si6O18) |
Be | ⓘ Phenakite | Be2SiO4 |
Be | ⓘ Hydroxylherderite | CaBe(PO4)(OH,F) |
B | Boron | |
B | ⓘ Schorl | Na(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH) |
B | ⓘ Elbaite | Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH) |
B | ⓘ Tourmaline | A(D3)G6(T6O18)(BO3)3X3Z |
B | ⓘ Rubellite | A(D3)G6(T6O18)(BO3)3X3Z |
B | ⓘ Verdelite | A(D3)G6(T6O18)(BO3)3X3Z |
B | ⓘ Foitite | (□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH |
B | ⓘ Vesuvianite | (Ca,Na,☐)19(Al,Mg,Fe3+)13(☐,B,Al,Fe3+)5(Si2O7)4(SiO4)10(OH,F,O)10 |
C | Carbon | |
C | ⓘ Graphite | C |
C | ⓘ Siderite | FeCO3 |
C | ⓘ Spurrite | Ca5(SiO4)2(CO3) |
C | ⓘ Aragonite | CaCO3 |
C | ⓘ Calcite | CaCO3 |
C | ⓘ Rhodochrosite | MnCO3 |
C | ⓘ Bismutite | (BiO)2CO3 |
O | Oxygen | |
O | ⓘ Wodginite | Mn2+Sn4+Ta2O8 |
O | ⓘ Beryl | Be3Al2(Si6O18) |
O | ⓘ Muscovite | KAl2(AlSi3O10)(OH)2 |
O | ⓘ Schorl | Na(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH) |
O | ⓘ Uraninite | UO2 |
O | ⓘ Columbite-(Fe) | Fe2+Nb2O6 |
O | ⓘ Spodumene | LiAlSi2O6 |
O | ⓘ Fluorapatite | Ca5(PO4)3F |
O | ⓘ Quartz | SiO2 |
O | ⓘ Elbaite | Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH) |
O | ⓘ Cookeite | (Al2Li)Al2(AlSi3O10)(OH)8 |
O | ⓘ Bertrandite | Be4(Si2O7)(OH)2 |
O | ⓘ Albite | Na(AlSi3O8) |
O | ⓘ Beryl (var: Morganite) | Be3Al2(Si6O18) |
O | ⓘ Beryl (var: Aquamarine) | Be3Al2Si6O18 |
O | ⓘ Quartz (var: Smoky Quartz) | SiO2 |
O | ⓘ Quartz (var: Rock Crystal) | SiO2 |
O | ⓘ Fluorapatite (var: Mn-bearing Fluorapatite) | (Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH) |
O | ⓘ Tantalite-(Mn) | Mn2+Ta2O6 |
O | ⓘ Albite (var: Cleavelandite) | Na(AlSi3O8) |
O | ⓘ Tourmaline | A(D3)G6(T6O18)(BO3)3X3Z |
O | ⓘ Analcime | Na(AlSi2O6) · H2O |
O | ⓘ Almandine | Fe32+Al2(SiO4)3 |
O | ⓘ Autunite | Ca(UO2)2(PO4)2 · 11H2O |
O | ⓘ Meta-autunite | Ca(UO2)2(PO4)2 · 6-8H2O |
O | ⓘ Montmorillonite | (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O |
O | ⓘ Bityite | LiCaAl2(AlBeSi2O10)(OH)2 |
O | ⓘ Clinozoisite | {Ca2}{Al3}(Si2O7)(SiO4)O(OH) |
O | ⓘ Cordierite | (Mg,Fe)2Al3(AlSi5O18) |
O | ⓘ Zircon (var: Cyrtolite) | Zr[(SiO4),(OH)4] |
O | ⓘ Kaolinite | Al2(Si2O5)(OH)4 |
O | ⓘ Limonite | (Fe,O,OH,H2O) |
O | ⓘ Lithiophilite | LiMn2+PO4 |
O | ⓘ Magnetite | Fe2+Fe23+O4 |
O | ⓘ Melanterite | Fe2+(H2O)6SO4 · H2O |
O | ⓘ Monazite-(Ce) | Ce(PO4) |
O | ⓘ Pickeringite | MgAl2(SO4)4 · 22H2O |
O | ⓘ Siderite | FeCO3 |
O | ⓘ Spessartine | Mn32+Al2(SiO4)3 |
O | ⓘ Triplite | (Mn2+,Fe2+)2(PO4)(F,OH) |
O | ⓘ Zircon | Zr(SiO4) |
O | ⓘ Fairfieldite | Ca2Mn2+(PO4)2 · 2H2O |
O | ⓘ Lacroixite | NaAl(PO4)F |
O | ⓘ Augelite | Al2(PO4)(OH)3 |
O | ⓘ Quartz (var: Citrine) | SiO2 |
O | ⓘ Bavenite | Ca4Be2Al2Si9O26(OH)2 |
O | ⓘ Kyanite | Al2(SiO4)O |
O | ⓘ Quartz (var: Milky Quartz) | SiO2 |
O | ⓘ Quartz (var: Rose Quartz) | SiO2 |
O | ⓘ Opal (var: Opal-AN) | SiO2 · nH2O |
O | ⓘ Rubellite | A(D3)G6(T6O18)(BO3)3X3Z |
O | ⓘ Verdelite | A(D3)G6(T6O18)(BO3)3X3Z |
O | ⓘ Beryl (var: Heliodor) | Be3Al2(Si6O18) |
O | ⓘ Annite | KFe32+(AlSi3O10)(OH)2 |
O | ⓘ Quartz (var: Amethyst) | SiO2 |
O | ⓘ Foitite | (□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH |
O | ⓘ Gobbinsite | Na5(Si11Al5)O32 · 11H2O |
O | ⓘ Parsonsite | Pb2(UO2)(PO4)2 |
O | ⓘ Hydroxylapatite | Ca5(PO4)3(OH) |
O | ⓘ Muscovite (var: Schernikite) | KAl2(AlSi3O10)(OH)2 |
O | ⓘ Titanite | CaTi(SiO4)O |
O | ⓘ Spurrite | Ca5(SiO4)2(CO3) |
O | ⓘ Gehlenite | Ca2Al(AlSiO7) |
O | ⓘ Larnite | Ca2SiO4 |
O | ⓘ Masutomilite | (K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2 |
O | ⓘ Staurolite | Fe22+Al9Si4O23(OH) |
O | ⓘ Opal | SiO2 · nH2O |
O | ⓘ Magnesio-hornblende | ☐{Ca2}{Mg4Al}(AlSi7O22)(OH)2 |
O | ⓘ Moraesite | Be2(PO4)(OH) · 4H2O |
O | ⓘ Bazzite | Be3Sc2(Si6O18) |
O | ⓘ K Feldspar (var: Adularia) | KAlSi3O8 |
O | ⓘ Tremolite | ☐{Ca2}{Mg5}(Si8O22)(OH)2 |
O | ⓘ Phenakite | Be2SiO4 |
O | ⓘ Anatase | TiO2 |
O | ⓘ Cassiterite | SnO2 |
O | ⓘ Montebrasite | LiAl(PO4)(OH) |
O | ⓘ Aragonite | CaCO3 |
O | ⓘ Calcite | CaCO3 |
O | ⓘ Dickinsonite-(KMnNa) | {KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2 |
O | ⓘ Diopside | CaMgSi2O6 |
O | ⓘ Eosphorite | Mn2+Al(PO4)(OH)2 · H2O |
O | ⓘ Epsomite | MgSO4 · 7H2O |
O | ⓘ Goethite | α-Fe3+O(OH) |
O | ⓘ Grossular | Ca3Al2(SiO4)3 |
O | ⓘ Gypsum | CaSO4 · 2H2O |
O | ⓘ Hematite | Fe2O3 |
O | ⓘ Petalite | LiAl(Si4O10) |
O | ⓘ Hureaulite | (Mn,Fe)5(PO4)2(HPO4)2 · 4H2O |
O | ⓘ Pollucite | (Cs,Na)2(Al2Si4O12) · 2H2O |
O | ⓘ Purpurite | (Mn3+,Fe3+)PO4 |
O | ⓘ Rhodochrosite | MnCO3 |
O | ⓘ Scheelite | Ca(WO4) |
O | ⓘ Uranophane | Ca(UO2)2(SiO3OH)2 · 5H2O |
O | ⓘ Topaz | Al2(SiO4)(F,OH)2 |
O | ⓘ Wardite | NaAl3(PO4)2(OH)4 · 2H2O |
O | ⓘ Brazilianite | NaAl3(PO4)2(OH)4 |
O | ⓘ Mitridatite | Ca2Fe33+(PO4)3O2 · 3H2O |
O | ⓘ Spodumene (var: Kunzite) | LiAlSi2O6 |
O | ⓘ Rutile | TiO2 |
O | ⓘ Groutite | Mn3+O(OH) |
O | ⓘ Sicklerite | Li1-x(Mnx3+Mn2+1-x)PO4 |
O | ⓘ Hydroxylherderite | CaBe(PO4)(OH,F) |
O | ⓘ Natrophilite | NaMn2+PO4 |
O | ⓘ Microcline | K(AlSi3O8) |
O | ⓘ Albite (var: Oligoclase) | (Na,Ca)[Al(Si,Al)Si2O8] |
O | ⓘ Wollastonite | CaSiO3 |
O | ⓘ Zoisite | {Ca2}{Al3}(Si2O7)(SiO4)O(OH) |
O | ⓘ Augite (var: Fassaite) | (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6] |
O | ⓘ Anorthite | Ca(Al2Si2O8) |
O | ⓘ Augite | (CaxMgyFez)(Mgy1Fez1)Si2O6 |
O | ⓘ Arsenolite | As2O3 |
O | ⓘ Bismite | Bi2O3 |
O | ⓘ Bismutite | (BiO)2CO3 |
O | ⓘ Crandallite | CaAl3(PO4)(PO3OH)(OH)6 |
O | ⓘ Gahnite | ZnAl2O4 |
O | ⓘ Samarskite-(Y) | (Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8 |
O | ⓘ Metatorbernite | Cu(UO2)2(PO4)2 · 8H2O |
O | ⓘ Morinite | NaCa2Al2(PO4)2(OH)F4 · 2H2O |
O | ⓘ Actinolite | ☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2 |
O | ⓘ Anglesite | PbSO4 |
O | ⓘ Ilmenite | Fe2+TiO3 |
O | ⓘ Phlogopite | KMg3(AlSi3O10)(OH)2 |
O | ⓘ Reddingite | (Mn2+,Fe2+)3(PO4)2 · 3H2O |
O | ⓘ Scorodite | Fe3+AsO4 · 2H2O |
O | ⓘ Vivianite | Fe32+(PO4)2 · 8H2O |
O | ⓘ Stewartite | Mn2+Fe23+(PO4)2(OH)2 · 8H2O |
O | ⓘ Goslarite | ZnSO4 · 7H2O |
O | ⓘ Vesuvianite | (Ca,Na,☐)19(Al,Mg,Fe3+)13(☐,B,Al,Fe3+)5(Si2O7)4(SiO4)10(OH,F,O)10 |
O | ⓘ Allanite-(Ce) | {CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH) |
O | ⓘ Amblygonite | LiAl(PO4)F |
O | ⓘ Pyrochlore Group | A2Nb2(O,OH)6Z |
O | ⓘ Pyrolusite | Mn4+O2 |
O | ⓘ Rhodonite | Mn2+SiO3 |
O | ⓘ Chrysotile | Mg3(Si2O5)(OH)4 |
O | ⓘ Xenotime-(Y) | Y(PO4) |
O | ⓘ Eucryptite | LiAlSiO4 |
O | ⓘ Manganite | Mn3+O(OH) |
O | ⓘ Planerite | Al6(PO4)2(HPO4)2(OH)8 · 4 H2O |
O | ⓘ Orthoclase | K(AlSi3O8) |
O | ⓘ Euxenite-(Y) | (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6 |
O | ⓘ Halloysite | Al2(Si2O5)(OH)4 |
F | Fluorine | |
F | ⓘ Fluorapatite | Ca5(PO4)3F |
F | ⓘ Fluorapatite (var: Mn-bearing Fluorapatite) | (Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH) |
F | ⓘ Fluorite | CaF2 |
F | ⓘ Triplite | (Mn2+,Fe2+)2(PO4)(F,OH) |
F | ⓘ Lacroixite | NaAl(PO4)F |
F | ⓘ Masutomilite | (K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2 |
F | ⓘ Topaz | Al2(SiO4)(F,OH)2 |
F | ⓘ Morinite | NaCa2Al2(PO4)2(OH)F4 · 2H2O |
F | ⓘ Vesuvianite | (Ca,Na,☐)19(Al,Mg,Fe3+)13(☐,B,Al,Fe3+)5(Si2O7)4(SiO4)10(OH,F,O)10 |
F | ⓘ Amblygonite | LiAl(PO4)F |
Na | Sodium | |
Na | ⓘ Schorl | Na(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH) |
Na | ⓘ Elbaite | Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH) |
Na | ⓘ Albite | Na(AlSi3O8) |
Na | ⓘ Albite (var: Cleavelandite) | Na(AlSi3O8) |
Na | ⓘ Analcime | Na(AlSi2O6) · H2O |
Na | ⓘ Montmorillonite | (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O |
Na | ⓘ Lacroixite | NaAl(PO4)F |
Na | ⓘ Gobbinsite | Na5(Si11Al5)O32 · 11H2O |
Na | ⓘ Bazzite | Be3Sc2(Si6O18) |
Na | ⓘ Dickinsonite-(KMnNa) | {KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2 |
Na | ⓘ Pollucite | (Cs,Na)2(Al2Si4O12) · 2H2O |
Na | ⓘ Wardite | NaAl3(PO4)2(OH)4 · 2H2O |
Na | ⓘ Brazilianite | NaAl3(PO4)2(OH)4 |
Na | ⓘ Natrophilite | NaMn2+PO4 |
Na | ⓘ Albite (var: Oligoclase) | (Na,Ca)[Al(Si,Al)Si2O8] |
Na | ⓘ Augite (var: Fassaite) | (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6] |
Na | ⓘ Morinite | NaCa2Al2(PO4)2(OH)F4 · 2H2O |
Na | ⓘ Vesuvianite | (Ca,Na,☐)19(Al,Mg,Fe3+)13(☐,B,Al,Fe3+)5(Si2O7)4(SiO4)10(OH,F,O)10 |
Mg | Magnesium | |
Mg | ⓘ Montmorillonite | (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O |
Mg | ⓘ Cordierite | (Mg,Fe)2Al3(AlSi5O18) |
Mg | ⓘ Pickeringite | MgAl2(SO4)4 · 22H2O |
Mg | ⓘ Magnesio-hornblende | ☐{Ca2}{Mg4Al}(AlSi7O22)(OH)2 |
Mg | ⓘ Bazzite | Be3Sc2(Si6O18) |
Mg | ⓘ Tremolite | ☐{Ca2}{Mg5}(Si8O22)(OH)2 |
Mg | ⓘ Diopside | CaMgSi2O6 |
Mg | ⓘ Epsomite | MgSO4 · 7H2O |
Mg | ⓘ Augite (var: Fassaite) | (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6] |
Mg | ⓘ Augite | (CaxMgyFez)(Mgy1Fez1)Si2O6 |
Mg | ⓘ Actinolite | ☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2 |
Mg | ⓘ Phlogopite | KMg3(AlSi3O10)(OH)2 |
Mg | ⓘ Vesuvianite | (Ca,Na,☐)19(Al,Mg,Fe3+)13(☐,B,Al,Fe3+)5(Si2O7)4(SiO4)10(OH,F,O)10 |
Mg | ⓘ Chrysotile | Mg3(Si2O5)(OH)4 |
Al | Aluminium | |
Al | ⓘ Beryl | Be3Al2(Si6O18) |
Al | ⓘ Muscovite | KAl2(AlSi3O10)(OH)2 |
Al | ⓘ Schorl | Na(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH) |
Al | ⓘ Spodumene | LiAlSi2O6 |
Al | ⓘ Elbaite | Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH) |
Al | ⓘ Cookeite | (Al2Li)Al2(AlSi3O10)(OH)8 |
Al | ⓘ Albite | Na(AlSi3O8) |
Al | ⓘ Beryl (var: Morganite) | Be3Al2(Si6O18) |
Al | ⓘ Beryl (var: Aquamarine) | Be3Al2Si6O18 |
Al | ⓘ Albite (var: Cleavelandite) | Na(AlSi3O8) |
Al | ⓘ Analcime | Na(AlSi2O6) · H2O |
Al | ⓘ Almandine | Fe32+Al2(SiO4)3 |
Al | ⓘ Montmorillonite | (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O |
Al | ⓘ Bityite | LiCaAl2(AlBeSi2O10)(OH)2 |
Al | ⓘ Clinozoisite | {Ca2}{Al3}(Si2O7)(SiO4)O(OH) |
Al | ⓘ Cordierite | (Mg,Fe)2Al3(AlSi5O18) |
Al | ⓘ Kaolinite | Al2(Si2O5)(OH)4 |
Al | ⓘ Pickeringite | MgAl2(SO4)4 · 22H2O |
Al | ⓘ Spessartine | Mn32+Al2(SiO4)3 |
Al | ⓘ Lacroixite | NaAl(PO4)F |
Al | ⓘ Augelite | Al2(PO4)(OH)3 |
Al | ⓘ Bavenite | Ca4Be2Al2Si9O26(OH)2 |
Al | ⓘ Kyanite | Al2(SiO4)O |
Al | ⓘ Beryl (var: Heliodor) | Be3Al2(Si6O18) |
Al | ⓘ Annite | KFe32+(AlSi3O10)(OH)2 |
Al | ⓘ Foitite | (□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH |
Al | ⓘ Gobbinsite | Na5(Si11Al5)O32 · 11H2O |
Al | ⓘ Muscovite (var: Schernikite) | KAl2(AlSi3O10)(OH)2 |
Al | ⓘ Gehlenite | Ca2Al(AlSiO7) |
Al | ⓘ Masutomilite | (K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2 |
Al | ⓘ Staurolite | Fe22+Al9Si4O23(OH) |
Al | ⓘ Magnesio-hornblende | ☐{Ca2}{Mg4Al}(AlSi7O22)(OH)2 |
Al | ⓘ K Feldspar (var: Adularia) | KAlSi3O8 |
Al | ⓘ Montebrasite | LiAl(PO4)(OH) |
Al | ⓘ Dickinsonite-(KMnNa) | {KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2 |
Al | ⓘ Eosphorite | Mn2+Al(PO4)(OH)2 · H2O |
Al | ⓘ Grossular | Ca3Al2(SiO4)3 |
Al | ⓘ Petalite | LiAl(Si4O10) |
Al | ⓘ Pollucite | (Cs,Na)2(Al2Si4O12) · 2H2O |
Al | ⓘ Topaz | Al2(SiO4)(F,OH)2 |
Al | ⓘ Wardite | NaAl3(PO4)2(OH)4 · 2H2O |
Al | ⓘ Brazilianite | NaAl3(PO4)2(OH)4 |
Al | ⓘ Spodumene (var: Kunzite) | LiAlSi2O6 |
Al | ⓘ Microcline | K(AlSi3O8) |
Al | ⓘ Albite (var: Oligoclase) | (Na,Ca)[Al(Si,Al)Si2O8] |
Al | ⓘ Zoisite | {Ca2}{Al3}(Si2O7)(SiO4)O(OH) |
Al | ⓘ Augite (var: Fassaite) | (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6] |
Al | ⓘ Anorthite | Ca(Al2Si2O8) |
Al | ⓘ Crandallite | CaAl3(PO4)(PO3OH)(OH)6 |
Al | ⓘ Gahnite | ZnAl2O4 |
Al | ⓘ Morinite | NaCa2Al2(PO4)2(OH)F4 · 2H2O |
Al | ⓘ Phlogopite | KMg3(AlSi3O10)(OH)2 |
Al | ⓘ Vesuvianite | (Ca,Na,☐)19(Al,Mg,Fe3+)13(☐,B,Al,Fe3+)5(Si2O7)4(SiO4)10(OH,F,O)10 |
Al | ⓘ Allanite-(Ce) | {CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH) |
Al | ⓘ Amblygonite | LiAl(PO4)F |
Al | ⓘ Eucryptite | LiAlSiO4 |
Al | ⓘ Planerite | Al6(PO4)2(HPO4)2(OH)8 · 4 H2O |
Al | ⓘ Orthoclase | K(AlSi3O8) |
Al | ⓘ Halloysite | Al2(Si2O5)(OH)4 |
Si | Silicon | |
Si | ⓘ Beryl | Be3Al2(Si6O18) |
Si | ⓘ Muscovite | KAl2(AlSi3O10)(OH)2 |
Si | ⓘ Schorl | Na(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH) |
Si | ⓘ Spodumene | LiAlSi2O6 |
Si | ⓘ Quartz | SiO2 |
Si | ⓘ Elbaite | Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH) |
Si | ⓘ Cookeite | (Al2Li)Al2(AlSi3O10)(OH)8 |
Si | ⓘ Bertrandite | Be4(Si2O7)(OH)2 |
Si | ⓘ Albite | Na(AlSi3O8) |
Si | ⓘ Beryl (var: Morganite) | Be3Al2(Si6O18) |
Si | ⓘ Beryl (var: Aquamarine) | Be3Al2Si6O18 |
Si | ⓘ Quartz (var: Smoky Quartz) | SiO2 |
Si | ⓘ Quartz (var: Rock Crystal) | SiO2 |
Si | ⓘ Albite (var: Cleavelandite) | Na(AlSi3O8) |
Si | ⓘ Analcime | Na(AlSi2O6) · H2O |
Si | ⓘ Almandine | Fe32+Al2(SiO4)3 |
Si | ⓘ Montmorillonite | (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O |
Si | ⓘ Bityite | LiCaAl2(AlBeSi2O10)(OH)2 |
Si | ⓘ Clinozoisite | {Ca2}{Al3}(Si2O7)(SiO4)O(OH) |
Si | ⓘ Cordierite | (Mg,Fe)2Al3(AlSi5O18) |
Si | ⓘ Zircon (var: Cyrtolite) | Zr[(SiO4),(OH)4] |
Si | ⓘ Kaolinite | Al2(Si2O5)(OH)4 |
Si | ⓘ Spessartine | Mn32+Al2(SiO4)3 |
Si | ⓘ Zircon | Zr(SiO4) |
Si | ⓘ Quartz (var: Citrine) | SiO2 |
Si | ⓘ Bavenite | Ca4Be2Al2Si9O26(OH)2 |
Si | ⓘ Kyanite | Al2(SiO4)O |
Si | ⓘ Quartz (var: Milky Quartz) | SiO2 |
Si | ⓘ Quartz (var: Rose Quartz) | SiO2 |
Si | ⓘ Opal (var: Opal-AN) | SiO2 · nH2O |
Si | ⓘ Beryl (var: Heliodor) | Be3Al2(Si6O18) |
Si | ⓘ Annite | KFe32+(AlSi3O10)(OH)2 |
Si | ⓘ Quartz (var: Amethyst) | SiO2 |
Si | ⓘ Foitite | (□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH |
Si | ⓘ Gobbinsite | Na5(Si11Al5)O32 · 11H2O |
Si | ⓘ Muscovite (var: Schernikite) | KAl2(AlSi3O10)(OH)2 |
Si | ⓘ Titanite | CaTi(SiO4)O |
Si | ⓘ Spurrite | Ca5(SiO4)2(CO3) |
Si | ⓘ Gehlenite | Ca2Al(AlSiO7) |
Si | ⓘ Larnite | Ca2SiO4 |
Si | ⓘ Masutomilite | (K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2 |
Si | ⓘ Staurolite | Fe22+Al9Si4O23(OH) |
Si | ⓘ Opal | SiO2 · nH2O |
Si | ⓘ Magnesio-hornblende | ☐{Ca2}{Mg4Al}(AlSi7O22)(OH)2 |
Si | ⓘ Bazzite | Be3Sc2(Si6O18) |
Si | ⓘ K Feldspar (var: Adularia) | KAlSi3O8 |
Si | ⓘ Tremolite | ☐{Ca2}{Mg5}(Si8O22)(OH)2 |
Si | ⓘ Phenakite | Be2SiO4 |
Si | ⓘ Diopside | CaMgSi2O6 |
Si | ⓘ Grossular | Ca3Al2(SiO4)3 |
Si | ⓘ Petalite | LiAl(Si4O10) |
Si | ⓘ Pollucite | (Cs,Na)2(Al2Si4O12) · 2H2O |
Si | ⓘ Uranophane | Ca(UO2)2(SiO3OH)2 · 5H2O |
Si | ⓘ Topaz | Al2(SiO4)(F,OH)2 |
Si | ⓘ Spodumene (var: Kunzite) | LiAlSi2O6 |
Si | ⓘ Microcline | K(AlSi3O8) |
Si | ⓘ Albite (var: Oligoclase) | (Na,Ca)[Al(Si,Al)Si2O8] |
Si | ⓘ Wollastonite | CaSiO3 |
Si | ⓘ Zoisite | {Ca2}{Al3}(Si2O7)(SiO4)O(OH) |
Si | ⓘ Augite (var: Fassaite) | (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6] |
Si | ⓘ Anorthite | Ca(Al2Si2O8) |
Si | ⓘ Augite | (CaxMgyFez)(Mgy1Fez1)Si2O6 |
Si | ⓘ Actinolite | ☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2 |
Si | ⓘ Phlogopite | KMg3(AlSi3O10)(OH)2 |
Si | ⓘ Vesuvianite | (Ca,Na,☐)19(Al,Mg,Fe3+)13(☐,B,Al,Fe3+)5(Si2O7)4(SiO4)10(OH,F,O)10 |
Si | ⓘ Allanite-(Ce) | {CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH) |
Si | ⓘ Rhodonite | Mn2+SiO3 |
Si | ⓘ Chrysotile | Mg3(Si2O5)(OH)4 |
Si | ⓘ Eucryptite | LiAlSiO4 |
Si | ⓘ Orthoclase | K(AlSi3O8) |
Si | ⓘ Halloysite | Al2(Si2O5)(OH)4 |
P | Phosphorus | |
P | ⓘ Fluorapatite | Ca5(PO4)3F |
P | ⓘ Fluorapatite (var: Mn-bearing Fluorapatite) | (Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH) |
P | ⓘ Autunite | Ca(UO2)2(PO4)2 · 11H2O |
P | ⓘ Meta-autunite | Ca(UO2)2(PO4)2 · 6-8H2O |
P | ⓘ Lithiophilite | LiMn2+PO4 |
P | ⓘ Monazite-(Ce) | Ce(PO4) |
P | ⓘ Triplite | (Mn2+,Fe2+)2(PO4)(F,OH) |
P | ⓘ Fairfieldite | Ca2Mn2+(PO4)2 · 2H2O |
P | ⓘ Lacroixite | NaAl(PO4)F |
P | ⓘ Augelite | Al2(PO4)(OH)3 |
P | ⓘ Parsonsite | Pb2(UO2)(PO4)2 |
P | ⓘ Hydroxylapatite | Ca5(PO4)3(OH) |
P | ⓘ Moraesite | Be2(PO4)(OH) · 4H2O |
P | ⓘ Montebrasite | LiAl(PO4)(OH) |
P | ⓘ Dickinsonite-(KMnNa) | {KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2 |
P | ⓘ Eosphorite | Mn2+Al(PO4)(OH)2 · H2O |
P | ⓘ Hureaulite | (Mn,Fe)5(PO4)2(HPO4)2 · 4H2O |
P | ⓘ Purpurite | (Mn3+,Fe3+)PO4 |
P | ⓘ Wardite | NaAl3(PO4)2(OH)4 · 2H2O |
P | ⓘ Brazilianite | NaAl3(PO4)2(OH)4 |
P | ⓘ Mitridatite | Ca2Fe33+(PO4)3O2 · 3H2O |
P | ⓘ Sicklerite | Li1-x(Mnx3+Mn2+1-x)PO4 |
P | ⓘ Hydroxylherderite | CaBe(PO4)(OH,F) |
P | ⓘ Natrophilite | NaMn2+PO4 |
P | ⓘ Crandallite | CaAl3(PO4)(PO3OH)(OH)6 |
P | ⓘ Metatorbernite | Cu(UO2)2(PO4)2 · 8H2O |
P | ⓘ Morinite | NaCa2Al2(PO4)2(OH)F4 · 2H2O |
P | ⓘ Reddingite | (Mn2+,Fe2+)3(PO4)2 · 3H2O |
P | ⓘ Vivianite | Fe32+(PO4)2 · 8H2O |
P | ⓘ Stewartite | Mn2+Fe23+(PO4)2(OH)2 · 8H2O |
P | ⓘ Amblygonite | LiAl(PO4)F |
P | ⓘ Xenotime-(Y) | Y(PO4) |
P | ⓘ Planerite | Al6(PO4)2(HPO4)2(OH)8 · 4 H2O |
S | Sulfur | |
S | ⓘ Pyrite | FeS2 |
S | ⓘ Arsenopyrite | FeAsS |
S | ⓘ Melanterite | Fe2+(H2O)6SO4 · H2O |
S | ⓘ Molybdenite | MoS2 |
S | ⓘ Pickeringite | MgAl2(SO4)4 · 22H2O |
S | ⓘ Pyrrhotite | Fe7S8 |
S | ⓘ Epsomite | MgSO4 · 7H2O |
S | ⓘ Galena | PbS |
S | ⓘ Gypsum | CaSO4 · 2H2O |
S | ⓘ Chalcopyrite | CuFeS2 |
S | ⓘ Sphalerite | ZnS |
S | ⓘ Sulphur | S8 |
S | ⓘ Bismuthinite | Bi2S3 |
S | ⓘ Anglesite | PbSO4 |
S | ⓘ Greenockite | CdS |
S | ⓘ Goslarite | ZnSO4 · 7H2O |
S | ⓘ Wurtzite (var: Voltzite) | (Zn,Fe)S |
S | ⓘ Wurtzite | (Zn,Fe)S |
Cl | Chlorine | |
Cl | ⓘ Fluorapatite (var: Mn-bearing Fluorapatite) | (Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH) |
K | Potassium | |
K | ⓘ Muscovite | KAl2(AlSi3O10)(OH)2 |
K | ⓘ Annite | KFe32+(AlSi3O10)(OH)2 |
K | ⓘ Muscovite (var: Schernikite) | KAl2(AlSi3O10)(OH)2 |
K | ⓘ Masutomilite | (K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2 |
K | ⓘ K Feldspar (var: Adularia) | KAlSi3O8 |
K | ⓘ Dickinsonite-(KMnNa) | {KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2 |
K | ⓘ Microcline | K(AlSi3O8) |
K | ⓘ Phlogopite | KMg3(AlSi3O10)(OH)2 |
K | ⓘ Orthoclase | K(AlSi3O8) |
Ca | Calcium | |
Ca | ⓘ Fluorapatite | Ca5(PO4)3F |
Ca | ⓘ Fluorapatite (var: Mn-bearing Fluorapatite) | (Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH) |
Ca | ⓘ Autunite | Ca(UO2)2(PO4)2 · 11H2O |
Ca | ⓘ Meta-autunite | Ca(UO2)2(PO4)2 · 6-8H2O |
Ca | ⓘ Montmorillonite | (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O |
Ca | ⓘ Fluorite | CaF2 |
Ca | ⓘ Bityite | LiCaAl2(AlBeSi2O10)(OH)2 |
Ca | ⓘ Clinozoisite | {Ca2}{Al3}(Si2O7)(SiO4)O(OH) |
Ca | ⓘ Fairfieldite | Ca2Mn2+(PO4)2 · 2H2O |
Ca | ⓘ Bavenite | Ca4Be2Al2Si9O26(OH)2 |
Ca | ⓘ Hydroxylapatite | Ca5(PO4)3(OH) |
Ca | ⓘ Titanite | CaTi(SiO4)O |
Ca | ⓘ Spurrite | Ca5(SiO4)2(CO3) |
Ca | ⓘ Gehlenite | Ca2Al(AlSiO7) |
Ca | ⓘ Larnite | Ca2SiO4 |
Ca | ⓘ Magnesio-hornblende | ☐{Ca2}{Mg4Al}(AlSi7O22)(OH)2 |
Ca | ⓘ Tremolite | ☐{Ca2}{Mg5}(Si8O22)(OH)2 |
Ca | ⓘ Aragonite | CaCO3 |
Ca | ⓘ Calcite | CaCO3 |
Ca | ⓘ Dickinsonite-(KMnNa) | {KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2 |
Ca | ⓘ Diopside | CaMgSi2O6 |
Ca | ⓘ Grossular | Ca3Al2(SiO4)3 |
Ca | ⓘ Gypsum | CaSO4 · 2H2O |
Ca | ⓘ Scheelite | Ca(WO4) |
Ca | ⓘ Uranophane | Ca(UO2)2(SiO3OH)2 · 5H2O |
Ca | ⓘ Mitridatite | Ca2Fe33+(PO4)3O2 · 3H2O |
Ca | ⓘ Hydroxylherderite | CaBe(PO4)(OH,F) |
Ca | ⓘ Albite (var: Oligoclase) | (Na,Ca)[Al(Si,Al)Si2O8] |
Ca | ⓘ Wollastonite | CaSiO3 |
Ca | ⓘ Zoisite | {Ca2}{Al3}(Si2O7)(SiO4)O(OH) |
Ca | ⓘ Augite (var: Fassaite) | (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6] |
Ca | ⓘ Anorthite | Ca(Al2Si2O8) |
Ca | ⓘ Augite | (CaxMgyFez)(Mgy1Fez1)Si2O6 |
Ca | ⓘ Crandallite | CaAl3(PO4)(PO3OH)(OH)6 |
Ca | ⓘ Samarskite-(Y) | (Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8 |
Ca | ⓘ Morinite | NaCa2Al2(PO4)2(OH)F4 · 2H2O |
Ca | ⓘ Actinolite | ☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2 |
Ca | ⓘ Vesuvianite | (Ca,Na,☐)19(Al,Mg,Fe3+)13(☐,B,Al,Fe3+)5(Si2O7)4(SiO4)10(OH,F,O)10 |
Ca | ⓘ Allanite-(Ce) | {CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH) |
Ca | ⓘ Euxenite-(Y) | (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6 |
Sc | Scandium | |
Sc | ⓘ Bazzite | Be3Sc2(Si6O18) |
Ti | Titanium | |
Ti | ⓘ Titanite | CaTi(SiO4)O |
Ti | ⓘ Anatase | TiO2 |
Ti | ⓘ Rutile | TiO2 |
Ti | ⓘ Augite (var: Fassaite) | (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6] |
Ti | ⓘ Ilmenite | Fe2+TiO3 |
Ti | ⓘ Euxenite-(Y) | (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6 |
Mn | Manganese | |
Mn | ⓘ Wodginite | Mn2+Sn4+Ta2O8 |
Mn | ⓘ Fluorapatite (var: Mn-bearing Fluorapatite) | (Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH) |
Mn | ⓘ Tantalite-(Mn) | Mn2+Ta2O6 |
Mn | ⓘ Lithiophilite | LiMn2+PO4 |
Mn | ⓘ Spessartine | Mn32+Al2(SiO4)3 |
Mn | ⓘ Triplite | (Mn2+,Fe2+)2(PO4)(F,OH) |
Mn | ⓘ Fairfieldite | Ca2Mn2+(PO4)2 · 2H2O |
Mn | ⓘ Masutomilite | (K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2 |
Mn | ⓘ Dickinsonite-(KMnNa) | {KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2 |
Mn | ⓘ Eosphorite | Mn2+Al(PO4)(OH)2 · H2O |
Mn | ⓘ Hureaulite | (Mn,Fe)5(PO4)2(HPO4)2 · 4H2O |
Mn | ⓘ Purpurite | (Mn3+,Fe3+)PO4 |
Mn | ⓘ Rhodochrosite | MnCO3 |
Mn | ⓘ Groutite | Mn3+O(OH) |
Mn | ⓘ Sicklerite | Li1-x(Mnx3+Mn2+1-x)PO4 |
Mn | ⓘ Natrophilite | NaMn2+PO4 |
Mn | ⓘ Reddingite | (Mn2+,Fe2+)3(PO4)2 · 3H2O |
Mn | ⓘ Stewartite | Mn2+Fe23+(PO4)2(OH)2 · 8H2O |
Mn | ⓘ Pyrolusite | Mn4+O2 |
Mn | ⓘ Rhodonite | Mn2+SiO3 |
Mn | ⓘ Manganite | Mn3+O(OH) |
Fe | Iron | |
Fe | ⓘ Schorl | Na(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH) |
Fe | ⓘ Columbite-(Fe) | Fe2+Nb2O6 |
Fe | ⓘ Pyrite | FeS2 |
Fe | ⓘ Almandine | Fe32+Al2(SiO4)3 |
Fe | ⓘ Arsenopyrite | FeAsS |
Fe | ⓘ Cordierite | (Mg,Fe)2Al3(AlSi5O18) |
Fe | ⓘ Limonite | (Fe,O,OH,H2O) |
Fe | ⓘ Magnetite | Fe2+Fe23+O4 |
Fe | ⓘ Melanterite | Fe2+(H2O)6SO4 · H2O |
Fe | ⓘ Pyrrhotite | Fe7S8 |
Fe | ⓘ Siderite | FeCO3 |
Fe | ⓘ Triplite | (Mn2+,Fe2+)2(PO4)(F,OH) |
Fe | ⓘ Annite | KFe32+(AlSi3O10)(OH)2 |
Fe | ⓘ Foitite | (□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH |
Fe | ⓘ Löllingite | FeAs2 |
Fe | ⓘ Staurolite | Fe22+Al9Si4O23(OH) |
Fe | ⓘ Bazzite | Be3Sc2(Si6O18) |
Fe | ⓘ Goethite | α-Fe3+O(OH) |
Fe | ⓘ Hematite | Fe2O3 |
Fe | ⓘ Chalcopyrite | CuFeS2 |
Fe | ⓘ Purpurite | (Mn3+,Fe3+)PO4 |
Fe | ⓘ Mitridatite | Ca2Fe33+(PO4)3O2 · 3H2O |
Fe | ⓘ Augite (var: Fassaite) | (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6] |
Fe | ⓘ Augite | (CaxMgyFez)(Mgy1Fez1)Si2O6 |
Fe | ⓘ Samarskite-(Y) | (Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8 |
Fe | ⓘ Actinolite | ☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2 |
Fe | ⓘ Ilmenite | Fe2+TiO3 |
Fe | ⓘ Scorodite | Fe3+AsO4 · 2H2O |
Fe | ⓘ Vivianite | Fe32+(PO4)2 · 8H2O |
Fe | ⓘ Stewartite | Mn2+Fe23+(PO4)2(OH)2 · 8H2O |
Fe | ⓘ Vesuvianite | (Ca,Na,☐)19(Al,Mg,Fe3+)13(☐,B,Al,Fe3+)5(Si2O7)4(SiO4)10(OH,F,O)10 |
Fe | ⓘ Allanite-(Ce) | {CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH) |
Fe | ⓘ Wurtzite (var: Voltzite) | (Zn,Fe)S |
Cu | Copper | |
Cu | ⓘ Chalcopyrite | CuFeS2 |
Cu | ⓘ Metatorbernite | Cu(UO2)2(PO4)2 · 8H2O |
Zn | Zinc | |
Zn | ⓘ Sphalerite | ZnS |
Zn | ⓘ Gahnite | ZnAl2O4 |
Zn | ⓘ Goslarite | ZnSO4 · 7H2O |
Zn | ⓘ Wurtzite (var: Voltzite) | (Zn,Fe)S |
Zn | ⓘ Wurtzite | (Zn,Fe)S |
As | Arsenic | |
As | ⓘ Arsenopyrite | FeAsS |
As | ⓘ Löllingite | FeAs2 |
As | ⓘ Arsenolite | As2O3 |
As | ⓘ Scorodite | Fe3+AsO4 · 2H2O |
Y | Yttrium | |
Y | ⓘ Samarskite-(Y) | (Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8 |
Y | ⓘ Xenotime-(Y) | Y(PO4) |
Y | ⓘ Euxenite-(Y) | (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6 |
Zr | Zirconium | |
Zr | ⓘ Zircon (var: Cyrtolite) | Zr[(SiO4),(OH)4] |
Zr | ⓘ Zircon | Zr(SiO4) |
Nb | Niobium | |
Nb | ⓘ Columbite-(Fe) | Fe2+Nb2O6 |
Nb | ⓘ Samarskite-(Y) | (Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8 |
Nb | ⓘ Pyrochlore Group | A2Nb2(O,OH)6Z |
Nb | ⓘ Euxenite-(Y) | (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6 |
Mo | Molybdenum | |
Mo | ⓘ Molybdenite | MoS2 |
Cd | Cadmium | |
Cd | ⓘ Greenockite | CdS |
Sn | Tin | |
Sn | ⓘ Wodginite | Mn2+Sn4+Ta2O8 |
Sn | ⓘ Cassiterite | SnO2 |
Cs | Caesium | |
Cs | ⓘ Pollucite | (Cs,Na)2(Al2Si4O12) · 2H2O |
Ce | Cerium | |
Ce | ⓘ Monazite-(Ce) | Ce(PO4) |
Ce | ⓘ Allanite-(Ce) | {CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH) |
Ce | ⓘ Euxenite-(Y) | (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6 |
Ta | Tantalum | |
Ta | ⓘ Wodginite | Mn2+Sn4+Ta2O8 |
Ta | ⓘ Tantalite-(Mn) | Mn2+Ta2O6 |
Ta | ⓘ Microlite Group | A2-mTa2X6-wZ-n |
Ta | ⓘ Samarskite-(Y) | (Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8 |
Ta | ⓘ Euxenite-(Y) | (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6 |
W | Tungsten | |
W | ⓘ Scheelite | Ca(WO4) |
Pb | Lead | |
Pb | ⓘ Parsonsite | Pb2(UO2)(PO4)2 |
Pb | ⓘ Galena | PbS |
Pb | ⓘ Anglesite | PbSO4 |
Bi | Bismuth | |
Bi | ⓘ Bismuthinite | Bi2S3 |
Bi | ⓘ Bismite | Bi2O3 |
Bi | ⓘ Bismutite | (BiO)2CO3 |
Th | Thorium | |
Th | ⓘ Samarskite-(Y) | (Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8 |
Th | ⓘ Euxenite-(Y) | (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6 |
U | Uranium | |
U | ⓘ Uraninite | UO2 |
U | ⓘ Autunite | Ca(UO2)2(PO4)2 · 11H2O |
U | ⓘ Meta-autunite | Ca(UO2)2(PO4)2 · 6-8H2O |
U | ⓘ Parsonsite | Pb2(UO2)(PO4)2 |
U | ⓘ Uranophane | Ca(UO2)2(SiO3OH)2 · 5H2O |
U | ⓘ Samarskite-(Y) | (Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8 |
U | ⓘ Metatorbernite | Cu(UO2)2(PO4)2 · 8H2O |
U | ⓘ Euxenite-(Y) | (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6 |
Regional Geology
This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.
Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org
Devonian - Silurian 358.9 - 443.8 Ma ID: 3186140 | Paleozoic sedimentary and volcanic rocks Age: Paleozoic (358.9 - 443.8 Ma) Lithology: Mudstone-carbonate-sandstone-conglomerate Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154] |
Late Ordovician - Middle Ordovician 443.8 - 470 Ma ID: 2978277 | Collins Hill Formation Age: Ordovician (443.8 - 470 Ma) Stratigraphic Name: Collins Hill Formation Description: ( = Partridge Formation of New Hampshire) - Gray, rusty-weathering, medium- to coarse-grained, poorly layered schist, composed of quartz, oligoclase, muscovite, biotite, and garnet, and commonly staurolite, kyanite, or sillimanite, generally graphitic, interlayered with fine-grained two-mica gneiss, especially to the west, and with calc-silicate and amphibolite layers, also rare quartz-spessartine (coticule) layers. Comments: Part of Eastern Uplands; Iapetus (Oceanic) Terrane - Bronson Hill Anticlinorium; Brimfield Schist and equivalent formations (includes Collins Hill Formation) (Upper? and Middle Ordovician). Original map source: Connecticut Geological and Natural History Survey, DEP, in cooperation with the U.S. Geological Survey, 2000, Bedrock Geology of Connecticut, shapefile, scale 1:50,000 Lithology: Major:{schist}, Minor:{gneiss}, Incidental:{amphibolite, calc silicate rock} Reference: Horton, J.D., C.A. San Juan, and D.B. Stoeser. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States. doi: 10.3133/ds1052. U.S. Geological Survey Data Series 1052. [133] |
Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License
References
Sort by
Year (asc) Year (desc) Author (A-Z) Author (Z-A)Mindat Articles
History and Mineralology of the Strickland Quarry by Rowan LytleExternal Links
Cameron, et al (1954): http://pubs.er.usgs.gov/publication/pp255
Strickland Quarry, Strickland pegmatite, Collins Hill, Portland, Middlesex Co., Connecticut, USA