Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Rutile

A valid IMA mineral species - grandfathered
This page kindly sponsored by Peter Farquhar
Hide all sections | Show all sections

About RutileHide

Formula:
TiO2
As a Commodity:
Colour:
Blood red, brownish yellow, brown-red, yellow, greyish-black, black, brown, bluish or violet
Lustre:
Adamantine, Metallic
Hardness:
6 - 6½
Specific Gravity:
4.23
Crystal System:
Tetragonal
Member of:
Name:
The name rutile was first introduced by the German geologist Abraham Gottlob Werner in 1800 (cfr. Lampadius 1800 and Ludwig 1803). The name is from the Latin rutilus, meaning "reddish." The mineral was already known under other names, such as "red schorl" and some other names, some of them later recognized as synonyms or varieties.
I. von Born was the first who described the mineral, in his catalog (1772: 34), as Basaltes crystallisatus ruber [Red crystalline schorl, the latin Basaltes was at the time used for both "schorl" and basalt columns]. The locality given by von Born was Murán near Revúca, Slovakia (Papp 2004). Romé de Lisle (1783) used the name schorl rouge ou purpre [red or purple schorl] for a mineral found as inclusion in quartz from Madagascar. Later, in 1796, De Saussure described sagenite from St. Gothard in Switzerland. Sagenite is now recognized as a variety of rutile, see Sagenite (of Saussure). The element titanium was described by Klaproth (1795) from a specimen of hungarischen rother schörl (huangarian red schorl) from what is todays Slovakia. Richard Kirwan (1796) described the mineral under the name titanite (in Mindat see the entry titanite (of Kirwan)) and Haüy (1801) used the name titane oxydé.
The most common member of the Rutile Group. Rutile is one of the five forms of titanium dioxide, TiO2, found in nature.

Sellaite (magnesium fluoride, MgF2) also has a rutile-type structure. Compare 'UM1987-04-O:Ti'.

Note on the type locality:
Since Werner introduced rutile in 1800, Horcajuelo de la Sierra (originally erronously reported as Cajuelo, which is in Burgos) in Spain has been regarded as the type locality of rutile. A study by Papp (2004, 2007) has shown that the type locality should be Revúca, Slovakia . See also the messageboard at https://www.mindat.org/mesg-7-429614.html.




Unique IdentifiersHide

Mindat ID:
3486
Long-form identifier:
mindat:1:1:3486:5
GUID
(UUID V4):
c7e837a5-defc-41fa-b046-d464b16a741f

IMA Classification of RutileHide

Approved, 'Grandfathered' (first described prior to 1959)

Classification of RutileHide

4.DB.05

4 : OXIDES (Hydroxides, V[5,6] vanadates, arsenites, antimonites, bismuthites, sulfites, selenites, tellurites, iodates)
D : Metal: Oxygen = 1:2 and similar
B : With medium-sized cations; chains of edge-sharing octahedra
4.4.1.1

4 : SIMPLE OXIDES
4 : AX2
7.9.2

7 : Oxides and Hydroxides
9 : Oxides of Ti

Mineral SymbolsHide

As of 2021 there are now IMA–CNMNC approved mineral symbols (abbreviations) for each mineral species, useful for tables and diagrams.

Please only use the official IMA–CNMNC symbol. Older variants are listed for historical use only.

SymbolSourceReference
RtIMA–CNMNCWarr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43
RtKretz (1983)Kretz, R. (1983) Symbols of rock-forming minerals. American Mineralogist, 68, 277–279.
RtSiivolam & Schmid (2007)Siivolam, J. and Schmid, R. (2007) Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: List of mineral abbreviations. Web-version 01.02.07. IUGS Commission on the Systematics in Petrology. download
RtWhitney & Evans (2010)Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187 doi:10.2138/am.2010.3371
RtThe Canadian Mineralogist (2019)The Canadian Mineralogist (2019) The Canadian Mineralogist list of symbols for rock- and ore-forming minerals (December 30, 2019). download
RtWarr (2020)Warr, L.N. (2020) Recommended abbreviations for the names of clay minerals and associated phases. Clay Minerals, 55, 261–264 doi:10.1180/clm.2020.30

Pronunciation of RutileHide

Pronunciation:
PlayRecorded byCountry
Jolyon RalphUnited Kingdom
Jolyon RalphUnited Kingdom

Physical Properties of RutileHide

Adamantine, Metallic
Transparency:
Transparent
Colour:
Blood red, brownish yellow, brown-red, yellow, greyish-black, black, brown, bluish or violet
Streak:
Greyish black, pale brown, light yellow
Hardness:
6 - 6½ on Mohs scale
Hardness:
VHN100=894 - 974 kg/mm2 - Vickers
Tenacity:
Brittle
Cleavage:
Distinct/Good
{110} distinct, {100} less distinct; and, {111} in traces.
Parting:
On {092} due to twin gliding; also on {011}.
Fracture:
Irregular/Uneven, Conchoidal, Sub-Conchoidal
Density:
4.23(2) g/cm3 (Measured)    4.25 g/cm3 (Calculated)

Optical Data of RutileHide

Type:
Uniaxial (+)
RI values:
nω = 2.605 - 2.613 nε = 2.899 - 2.901
Max Birefringence:
δ = 0.294
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
Very High
Anisotropism:
Strong
Dispersion:
Strong
Reflectivity:
WavelengthR1R2
400nm23.7%27.0%
420nm23.2%26.5%
440nm22.7%26.0%
460nm22.2%25.5%
480nm21.7%25.1%
500nm21.3%24.7%
520nm20.9%24.3%
540nm20.6%24.0%
560nm20.2%23.6%
580nm20.0%23.4%
600nm19.7%23.1%
620nm19.5%22.9%
640nm19.2%22.8%
660nm19.1%22.6%
680nm19.0%22.5%
700nm18.9%22.5%

Reflectance graph
Graph shows reflectance levels at different wavelengths (in nm). Top of box is 100%. Peak reflectance is 27.0%.
R1 shown in black, R2 shown in red
Pleochroism:
Visible
Comments:
Shades of red, brown, yellow and green.

Chemistry of RutileHide

Mindat Formula:
TiO2
Common Impurities:
Fe,Ta,Nb,Cr,V,Sn,W,Sb

Age distributionHide

Recorded ages:
Neoarchean to Permian : 2665 Ma to 268 ± 30 Ma - based on 40 recorded ages.

Crystallography of RutileHide

Crystal System:
Tetragonal
Class (H-M):
4/mmm (4/m 2/m 2/m) - Ditetragonal Dipyramidal
Space Group:
P42/mnm
Cell Parameters:
a = 4.5937 Å, c = 2.9587 Å
Ratio:
a:c = 1 : 0.644
Unit Cell V:
62.43 ų (Calculated from Unit Cell)
Z:
2
Morphology:
Commonly prismatic, often slender to acicular [001]. Prism zone vertically striated or furrowed. Usually terminated by {101} or {111}; {001} rare. Rarely pyramidal. Granular massive.
Twinning:
On {011} common. Often geniculated; also contact twins of very varied habit. Sixlings and eightlings at times, occasionally polysynthetic. The twins are sometimes distorted by extension of a pair of faces on {011}. Twin gliding observed on this plane as well. Also on {031}, rare. On {092}, as twin gliding plane.

Crystallographic forms of RutileHide

Crystal Atlas:
Image Loading
Click on an icon to view
Rutile no.26 - Goldschmidt (1913-1926)
Rutile no.28 - Goldschmidt (1913-1926)
Rutile no.52 - Goldschmidt (1913-1926)
Rutile no.62 - Goldschmidt (1913-1926)
Rutile no.107 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by www.smorf.nl.

Toggle
Edge Lines | Miller Indices | Axes

Transparency
Opaque | Translucent | Transparent

View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

Crystal StructureHide

Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File    Best | x | y | z | a | b | c
Rotation
Stop | Start
Labels
Console Off | On | Grey | Yellow
IDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0001736RutileSwope R J, Smyth J R, Larson A C (1995) H in rutile-type compounds: I. Single-crystal neutron and X-ray diffraction study of H in rutile American Mineralogist 80 448-45319950300
0001735RutileSwope R J, Smyth J R, Larson A C (1995) H in rutile-type compounds: I. Single-crystal neutron and X-ray diffraction study of H in rutile American Mineralogist 80 448-4531995024
0001737RutileSwope R J, Smyth J R, Larson A C (1995) H in rutile-type compounds: I. Single-crystal neutron and X-ray diffraction study of H in rutile American Mineralogist 80 448-45319950300
0005164RutileMeagher E P, Lager G A (1979) Polyhedral thermal expansion in the TiO2 polymorphs: Refinement of the crystal structure of rutile and brookite at high temperature Sample at 25 degrees C The Canadian Mineralogist 17 77-8519790293
0005165RutileMeagher E P, Lager G A (1979) Polyhedral thermal expansion in the TiO2 polymorphs: Refinement of the crystal structure of rutile and brookite at high temperature Sample at 300 degrees C The Canadian Mineralogist 17 77-8519790293
0005166RutileMeagher E P, Lager G A (1979) Polyhedral thermal expansion in the TiO2 polymorphs: Refinement of the crystal structure of rutile and brookite at high temperature Sample at 600 degrees C The Canadian Mineralogist 17 77-8519790293
0005167RutileMeagher E P, Lager G A (1979) Polyhedral thermal expansion in the TiO2 polymorphs: Refinement of the crystal structure of rutile and brookite at high temperature Sample at 900 degrees C The Canadian Mineralogist 17 77-8519790293
0009161RutileBaur W H (1956) Uber die verfeinerung der kristallstrukturbestimmung einiger vertreter des rutiltyps: TiO2, SnO2, GeO2 und MgF2 Acta Crystallographica 9 515-52019560293
0009404RutileBaur W H, Khan A A (1971) Rutile-type compounds. VI. SiO2, GeO2 and a comparison with other rutile-type structures Acta Crystallographica B27 2133-213919710293
0019092RutileHoward C J, Sabine T M, Dickson F (1991) Structural and thermal parameters for rutile and anatase Acta Crystallographica B47 462-4681991synthetic0293
0011762RutileWyckoff R W G (1963) Second edition. Interscience Publishers, New York, New York Crystal Structures 1 239-44419630293
CIF Raw Data - click here to close

Epitaxial Relationships of RutileHide

Epitaxial Minerals:
MagnetiteFe2+Fe3+2O4
IlmeniteFe2+TiO3
HematiteFe2O3
BrookiteTiO2
AnataseTiO2
Epitaxy Comments:
Oriented microscopic needles of rutile are frequently observed in corundum, pseudobrookite, phlogopite, and quartz.

X-Ray Powder DiffractionHide

Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
Powder Diffraction Data:
d-spacingIntensity
3.247 Å(100)
1.6874 Å(60)
2.487 Å(50)
2.188 Å(25)
1.6237 Å(20)
1.3598 Å(20)
1.3465 Å(12)

Geological EnvironmentHide

Paragenetic Mode(s):
Paragenetic ModeEarliest Age (Ga)
Pre-terrestrial "Ur-minerals">4.57
1 : Stellar atmosphere condensates
Stage 1: Primary nebular phases4.567-4.561
3 : Solar nebular condensates (CAIs, AOAs, URIs)>4.565
4 : Primary chondrule phases4.566–4.561
Stage 2: Planetesimal differentiation and alteration4.566-4.550
5 : Primary asteroid phases4.566–4.560
Stage 3a: Earth’s earliest Hadean crust>4.50
7 : Ultramafic igneous rocks
8 : Mafic igneous rocks
Stage 3b: Earth’s earliest hydrosphere>4.45
12 : Hadean hydrothermal subsurface sulfide deposits (see also #33)
Stage 4a: Earth’s earliest continental crust>4.4-3.0
19 : Granitic intrusive rocks
Near-surface Processes
23 : Subaerial aqueous alteration by non-redox-sensitive fluids (see also #47)
26 : Hadean detrital minerals
Stage 4b: Highly evolved igneous rocks>3.0
34 : Complex granite pegmatites
Stage 5: Initiation of plate tectonics<3.5-2.5
38 : Ophiolites
39 : High-𝑃 metamorphism (blueschist, eclogite, ultrahigh 𝑃 facies)
40 : Regional metamorphism (greenschist, amphibolite, granulite facies)
41 : Mantle metasomatism
Stage 10a: Neoproterozoic oxygenation/terrestrial biosphere<0.6
50 : Coal and/or oil shale minerals<0.36
Stage 10b: Anthropogenic minerals<10 Ka
54 : Coal and other mine fire minerals (see also #51 and #56)
Geological Setting:
As an accessory mineral in high-pressure, high-temperature igneous rocks, in placers.

Type Occurrence of RutileHide

Synonyms of RutileHide

Other Language Names for RutileHide

Varieties of RutileHide

EdisoniteA crystallographic variety of rutile.
Gel-RutileOne of the constituents of leucoxene pseudomorphs.

Originally described from Lovozero Massif, Kola Peninsula, Murmanskaja Oblast', Northern Region, Russia.
IlmenorutileA Nb-bearing rutile (see also Niobian Rutile); compare also the Ta-bearing variety "strüverite".

Originally reported from Pit No. 59, Ilmen Mts, Chelyabinsk Oblast', Urals Region, Russia.
Iron- and Antimony-bearing RutileAn Fe- and Sb-bearing variety of rutile.
Originally reported from Yadovitaya fumarole, Tolbachik volcano, Russia.

Sb-rich rutile is reported from several metamorphosed Mn deposits.
In all cases the coupled substitution Ti4+ <-> Sb5+ + (Fe,Al,Cr,Mn)3+ is ...
Iserite (of Janovsky)Doubtful variety
LusteriteTrade name for artificial rutile.
NigrineAn iron-rich variety of rutile, or an intimate intergrowth of rutile and ilmenite
Niobium- and Chromium-bearing RutileNb-V-enriched variety from DeBeers mine (kimberlites), associated, i.a., with hawthorneite.
Niobium-bearing RutileA Nb-bearing variety of rutile.
See also ilmenorutile.
Sagenite (of Saussure)The original definition of the name Sagenite was made by Horace Bénédict de Saussure in 1796.

"These small crystals usually cross at the same angles, so as to form a mesh-like network of parallelograms; it seemed proper to me because of this singular p...
Star rutileStar-shaped sagenitic rutile.
StrüveriteA Ta- and Fe-bearing variety of rutile.
Compare also ilmenorutile. The name strüverite has been used if Ta > Nb and if Nb = Ta or Nb> Ta the variety has been classified as ilmenorutile.

Tantalum-bearing Rutile
Vanadium-bearing Rutile

Relationship of Rutile to other SpeciesHide

Member of:
Other Members of this group:
ArgutiteGeO2Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
CassiteriteSnO2Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
ParatelluriteTeO2Tet. 4 2 2
PlattneritePbO2Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
PyrolusiteMn4+O2Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
StishoviteSiO2Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
TripuhyiteFe3+Sb5+O4Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
UM2000-35-O:FeNbScTaTi(Sc,Fe2+,Fe3+,Mn)(Ti,Sn,Zr)1.5(Nb,Ta,W)1.33O8

Common AssociatesHide

Associated Minerals Based on Photo Data:
1,373 photos of Rutile associated with QuartzSiO2
1,292 photos of Rutile associated with HematiteFe2O3
547 photos of Rutile associated with AnataseTiO2
257 photos of Rutile associated with MuscoviteKAl2(AlSi3O10)(OH)2
178 photos of Rutile associated with IlmeniteFe2+TiO3
170 photos of Rutile associated with AlbiteNa(AlSi3O8)
168 photos of Rutile associated with BrookiteTiO2
164 photos of Rutile associated with CalciteCaCO3
134 photos of Rutile associated with PyriteFeS2
132 photos of Rutile associated with SideriteFeCO3

Related Minerals - Strunz-mindat GroupingHide

4.DB.NioboheftetjerniteScNbO4Mon. 2/m : P21/b
4.DB.Shakhdaraite-(Y)ScYNb2O8Mon. 2/m : P2/b
4.DB.Nioboixiolite-(Mn2+)(Nb0.67Mn2+0.33)O2Orth. mmm (2/m 2/m 2/m) : Pbcn
4.DB.Nioboixiolite-([])(Nb0.80.2)4+O2Orth. mmm (2/m 2/m 2/m) : Pbcn
4.DB.05ArgutiteGeO2Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
4.DB.05CassiteriteSnO2Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
4.DB.05PlattneritePbO2Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
4.DB.05PyrolusiteMn4+O2Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
4.DB.05TripuhyiteFe3+Sb5+O4Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
4.DB.05TugarinoviteMoO2Mon. 2/m : P21/b
4.DB.05Varlamoffite(Sn,Fe)(O,OH)2
4.DB.10ByströmiteMgSb2O6Tet. 4/mmm (4/m 2/m 2/m) : P4/nmm
4.DB.10Tapiolite-(Fe)Fe2+Ta2O6Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
4.DB.10Tapiolite-(Mn)Mn2+Ta2O6Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
4.DB.10OrdoñeziteZnSb2O6Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
4.DB.10TredouxiteNiSb2O6Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
4.DB.15bAkhtenskiteε-Mn4+O2Hex. 6/mmm (6/m 2/m 2/m) : P63/mmc
4.DB.15cNsutite(Mn4+,Mn2+)(O,OH)2Hex.
4.DB.15aParamontroseiteV4+O2Orth. mmm (2/m 2/m 2/m)
4.DB.15aRamsdelliteMn4+O2Orth. mmm (2/m 2/m 2/m)
4.DB.20Scrutinyiteα-PbO2Orth. mmm (2/m 2/m 2/m) : Pbcn
4.DB.25IshikawaiteU4+Fe2+Nb2O8Mon.
4.DB.25Samarskite-(Y)YFe3+Nb2O8Mon. 2/m : P2/b
4.DB.25SrilankiteZrTi2O6Orth. mmm (2/m 2/m 2/m) : Pbcn
4.DB.25Yttrocolumbite-(Y)Y(U4+,Fe2+)Nb2O8
4.DB.25Calciosamarskite(Ca,U4+)Fe3+(Nb,Ta,Ti)2O8Orth. mmm (2/m 2/m 2/m)
4.DB.25Samarskite-(Yb)YbFe3+(Nb,Ta)2O8Mon. 2/m : P2/b
4.DB.25Ixiolite-(Fe2+)(Ta0.67Fe2+0.33)O2Orth.
4.DB.25Ixiolite-(Mn2+)(Ta0.67Mn2+0.33)O2Orth.
4.DB.30FerberiteFeWO4Mon. 2/m : P2/b
4.DB.30HübneriteMnWO4Mon. 2/m : P2/b
4.DB.30Sanmartinite(Zn,Fe)WO4Mon. 2/m : P21/b
4.DB.30KrasnoselskiteCoWO4Mon.
4.DB.30HeftetjerniteScTaO4Mon. 2/m : P2/b
4.DB.30HuanzalaiteMgWO4Mon. 2/m : P2/b
4.DB.30 vaWolframite Group
4.DB.30Rossovskyite(Fe3+,Ta)(Nb,Ti)O4Mon. 2/m : P2/b
4.DB.35Columbite-(Fe)Fe2+Nb2O6Orth. mmm (2/m 2/m 2/m) : Pbcn
4.DB.35Tantalite-(Fe)Fe2+Ta2O6Orth. mmm (2/m 2/m 2/m) : Pbcn
4.DB.35Columbite-(Mn)Mn2+Nb2O6Orth. mmm (2/m 2/m 2/m) : Pbcn
4.DB.35Tantalite-(Mn)Mn2+Ta2O6Orth. mmm (2/m 2/m 2/m) : Pbcn
4.DB.35Columbite-(Mg)(Mg,Fe,Mn)(Nb,Ta)2O6Orth.
4.DB.35Qitianlingite(Fe,Mn)2(Nb,Ta)2WO10Orth. mmm (2/m 2/m 2/m)
4.DB.35Tantalite-(Mg)(Mg,Fe2+)(Ta,Nb)2O6Orth. mmm (2/m 2/m 2/m) : Pbcn
4.DB.40FerrowodginiteFe2+Sn4+Ta2O8Mon. 2/m : B2/b
4.DB.40LithiotantiteLiTa3O8Mon. 2/m : P21/b
4.DB.40LithiowodginiteLiTa3O8Mon. 2/m : B2/b
4.DB.40TitanowodginiteMn2+TiTa2O8Mon. 2/m : B2/b
4.DB.40WodginiteMn2+Sn4+Ta2O8Mon. 2/m : B2/b
4.DB.40FerrotitanowodginiteFe2+TiTa2O8Mon. 2/m : B2/b
4.DB.40Tantalowodginite(Mn2+0.50.5)TaTa2O8Mon. 2/m : B2/b
4.DB.40WolframowodginiteMn(Mn,Sn,Fe,Ta)(W,Ta,Nb)2O8
4.DB.45TivaniteV3+TiO3(OH)Mon. 2/m : P21/b
4.DB.50Carmichaelite(Ti,Cr,Fe)[O2-x(OH)x]Mon. 2/m : P21/b
4.DB.55AlumotantiteAlTaO4Orth. mmm (2/m 2/m 2/m) : Pbcn
4.DB.60Biehlite((Sb,As)O)2[MoO4]Mon. 2/m : B2/b

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Rutile in petrologyHide

Internet Links for RutileHide

References for RutileHide

Reference List:

Localities for RutileHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListShow

This section is currently hidden. Click the show button to view.
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: March 19, 2024 06:40:53 Page updated: March 19, 2024 00:38:54
Go to top of page