SUPPORT US. If mindat.org is important to you, click here to donate to our Fall 2019 fundraiser!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Vaca Muerta meteorite, Taltal, Antofagasta Province, Antofagasta, Chilei
Regional Level Types
Vaca Muerta meteoriteMeteorite Fall Location
Taltal- not defined -
Antofagasta ProvinceProvince
AntofagastaRegion
ChileCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Latitude & Longitude (WGS84):
25° 45' South , 70° 3' West
Latitude & Longitude (decimal):
Köppen climate type:


Mesosiderite-A1; S1 (Stony-Iron)
Found in 1861. 3.83 tons

The Vaca Muerta meteorite is the most massive of the 216 mesosiderites recovered between 1842 and 2014. It is more than 4 times as massive as the second most massive mesosiderite, Bondoc, an 888.6 kg mass recovered from the Philippines in 1956. Several pieces up to 25 kg in mass were found in the late 19th century. A large strewnfield (11.5 km x 2.1 km) has resulted in a number of additional pieces being recovered after the first few pieces were found. Vaca Muerte is a fairly typical 'mesosiderite' with ~47 wt% Fe-Ni metal, ~40 wt% silicates and ~12-13 wt% troilite according to the summarizing work of Mittlefehldt et al. (1998). Most mesosiderites have a diverse set of silicates and other phases which have apparently undergone some dramatic interactions with invading iron during early solar system epochs. Vaca Muerte might be expected to have even more diversity because its silicate matrix is only partially equilibrated and also because the sheer amount of available mass creates additional diverse micro-environments. And, indeed, olivine, pyroxene, and plagioclase both as individual clasts and in matrix have been frequent objects of study. Accompanying them are a number of additional oxides, opaques, and other phases of interest — and presumably more will be found.

A word of caution. The number of phases produced by terrestrial weathering reported from Vaca Muerte is rather high. Brecciated, sulfide-rich meteorites are particularly vulnerable to attack by air and water. The aragonite, calcite, goethite, limonite, paraotwayite and retgersite listed below are mostly — and quite likely - entirely the products of terrestrial weathering. Hopefully, there are still enclaves of other unusual and perhaps highly reduced phases yet to be uncovered (in addition to the more or less expected Fe-Ni metal, troilite, and schreibersite).

Vaca Muerta is one of the 7 mesosiderites classified as A1 Mesosiderites (relatively plagioclase-rich; unequilibrated matrix). Moderately large pieces of Vaca Muerte are found at a number of museums (15 kg at the Museum d'Histoire Naturelle in Paris, 9 kg in the American Museum of Natural History in New York, 8 kg in the Museum of Natural History in London, etc.) with many smaller pieces being displayed and sold on the Internet in various venues.

Regions containing this locality

South America PlateTectonic Plate
South AmericaContinent
Atacama Desert, ChileDesert

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


28 valid minerals.

Meteorite/Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

'Albite-Anorthite Series'
Reference: Rull, F., Martinez‐Frias, J., Sansano, A., Medina, J., & Edwards, H. G. M. (2004). Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites. Journal of Raman Spectroscopy, 35(6), 497-503.; Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.; Floran, R. J. (1978) Silicate petrography, classification, and origin of the mesosiderites - Review and new observations. In: Lunar and Planetary Science Conference, Proceedings XI. Vol. 1, 1053-1081: New York, Pergamon Press, Inc.
Anorthite
Formula: Ca(Al2Si2O8)
Description: Plagioclase in ilmenite-bearing enclaves is An92-97 (i.e. anorthosite)
Reference: Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.
'Antitaenite'
Formula: Fe3Ni
Reference: Scorzelli, R. B., & Souza Azevedo, I. (2001). Mössbauer Spectroscopic Studies on Mesosiderites. Meteoritics and Planetary Science Supplement, 36, 185.
Aragonite
Formula: CaCO3
Reference: Rull, F., Martinez‐Frias, J., Sansano, A., Medina, J., & Edwards, H. G. M. (2004). Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites. Journal of Raman Spectroscopy, 35(6), 497-503.
Augite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Reference: Rull, F., Martinez‐Frias, J., Sansano, A., Medina, J., & Edwards, H. G. M. (2004). Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites. Journal of Raman Spectroscopy, 35(6), 497-503.
Baddeleyite
Formula: ZrO2
Reference: Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.
Calcite
Formula: CaCO3
Reference: Rull, F., Martinez‐Frias, J., Sansano, A., Medina, J., & Edwards, H. G. M. (2004). Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites. Journal of Raman Spectroscopy, 35(6), 497-503.
Chromite
Formula: Fe2+Cr3+2O4
Reference: Rull, F., Martinez‐Frias, J., Sansano, A., Medina, J., & Edwards, H. G. M. (2004). Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites. Journal of Raman Spectroscopy, 35(6), 497-503.; Prior, G. T. (1918). On the mesosiderite-grahamite group of meteorites; with analyses of Vaca Muerta, Hainholz, Simondium, and Powder Mill Creek. Mineral. Mag, 18, 151-172.; Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Copper
Formula: Cu
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
'Fayalite-Forsterite Series'
Description: Olivine with coronas in contact with matrix.
Reference: Prior, G. T. (1918). On the mesosiderite-grahamite group of meteorites; with analyses of Vaca Muerta, Hainholz, Simondium, and Powder Mill Creek. Mineral. Mag, 18, 151-172.; Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.; Floran, R. J. (1978) Silicate petrography, classification, and origin of the mesosiderites - Review and new observations. In: Lunar and Planetary Science Conference, Proceedings XI. Vol. 1, 1053-1081: New York, Pergamon Press, Inc.
Fluorapatite
Formula: Ca5(PO4)3F
Reference: Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.
Goethite
Formula: α-Fe3+O(OH)
Reference: Rull, F., Martinez‐Frias, J., Sansano, A., Medina, J., & Edwards, H. G. M. (2004). Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites. Journal of Raman Spectroscopy, 35(6), 497-503.
Graphite
Formula: C
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages. ; Floran, R. J. (1978) Silicate petrography, classification, and origin of the mesosiderites - Review and new observations. In: Lunar and Planetary Science Conference, Proceedings XI. Vol. 1, 1053-1081: New York, Pergamon Press, Inc.
Gypsum
Formula: CaSO4 · 2H2O
Reference: Hubert Putz collection (SXRD-analysed by Uwe Kolitsch)
Ilmenite
Formula: Fe2+TiO3
Reference: Rull, F., Martinez‐Frias, J., Sansano, A., Medina, J., & Edwards, H. G. M. (2004). Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites. Journal of Raman Spectroscopy, 35(6), 497-503.; Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Iron
Formula: Fe
Reference: Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.; Scorzelli, R. B., & Souza Azevedo, I. (2001). Mössbauer Spectroscopic Studies on Mesosiderites. Meteoritics and Planetary Science Supplement, 36, 185.; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Iron var: Kamacite
Formula: (Fe,Ni)
Reference: Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.; Scorzelli, R. B., & Souza Azevedo, I. (2001). Mössbauer Spectroscopic Studies on Mesosiderites. Meteoritics and Planetary Science Supplement, 36, 185.; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Lepidocrocite
Formula: γ-Fe3+O(OH)
Reference: Rull, F., Martinez‐Frias, J., Sansano, A., Medina, J., & Edwards, H. G. M. (2004). Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites. Journal of Raman Spectroscopy, 35(6), 497-503.
'Limonite'
Formula: (Fe,O,OH,H2O)
Reference: Rull, F., Martinez‐Frias, J., Sansano, A., Medina, J., & Edwards, H. G. M. (2004). Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites. Journal of Raman Spectroscopy, 35(6), 497-503.
Maghemite ?
Formula: (Fe3+0.670.33)Fe3+2O4
Reference: Rull, F., Martinez‐Frias, J., Sansano, A., Medina, J., & Edwards, H. G. M. (2004). Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites. Journal of Raman Spectroscopy, 35(6), 497-503.
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Rull, F., Martinez‐Frias, J., Sansano, A., Medina, J., & Edwards, H. G. M. (2004). Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites. Journal of Raman Spectroscopy, 35(6), 497-503.
Merrillite
Formula: Ca9NaMg(PO4)7
Reference: Rull, F., Martinez‐Frias, J., Sansano, A., Medina, J., & Edwards, H. G. M. (2004). Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites. Journal of Raman Spectroscopy, 35(6), 497-503.
'Orthopyroxene Subgroup'
Reference: Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.
Paraotwayite
Formula: Ni(OH)2-x(SO4,CO3)0.5x
Reference: Tom Loomis (Dakotamatrix) samples showed on his personal web site during 2007; http://tw.strahlen.org/fotoatlas1/meteorite_steineisen.html
Pigeonite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Reference: Rull, F., Martinez‐Frias, J., Sansano, A., Medina, J., & Edwards, H. G. M. (2004). Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites. Journal of Raman Spectroscopy, 35(6), 497-503.; Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.
'Plessite'
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
'Pyroxene Group'
Reference: Floran, R. J. (1978) Silicate petrography, classification, and origin of the mesosiderites - Review and new observations. In: Lunar and Planetary Science Conference, Proceedings XI. Vol. 1, 1053-1081: New York, Pergamon Press, Inc.
Retgersite
Formula: NiSO4 · 6H2O
Reference: Tom Loomis (Dakotamatrix) samples showed on his personal web site during 2007; http://tw.strahlen.org/fotoatlas1/meteorite_steineisen.html
Rutile
Formula: TiO2
Reference: Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Schreibersite
Formula: (Fe,Ni)3P
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Taenite
Formula: (Fe,Ni)
Reference: Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Tetrataenite
Formula: FeNi
Reference: Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.; Scorzelli, R. B., & Souza Azevedo, I. (2001). Mössbauer Spectroscopic Studies on Mesosiderites. Meteoritics and Planetary Science Supplement, 36, 185.
Tridymite
Formula: SiO2
Reference: Prior, G. T. (1918). On the mesosiderite-grahamite group of meteorites; with analyses of Vaca Muerta, Hainholz, Simondium, and Powder Mill Creek. Mineral. Mag, 18, 151-172.; Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.
Troilite
Formula: FeS
Reference: Rull, F., Martinez‐Frias, J., Sansano, A., Medina, J., & Edwards, H. G. M. (2004). Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites. Journal of Raman Spectroscopy, 35(6), 497-503.; Prior, G. T. (1918). On the mesosiderite-grahamite group of meteorites; with analyses of Vaca Muerta, Hainholz, Simondium, and Powder Mill Creek. Mineral. Mag, 18, 151-172.; Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Whitlockite
Formula: Ca9Mg(PO4)6(HPO4)
Reference: Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.
Zircon
Formula: Zr(SiO4)
Reference: Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.; Floran, R. J. (1978) Silicate petrography, classification, and origin of the mesosiderites - Review and new observations. In: Lunar and Planetary Science Conference, Proceedings XI. Vol. 1, 1053-1081: New York, Pergamon Press, Inc.

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
'Antitaenite'1.AE.10Fe3Ni
Copper1.AA.05Cu
Graphite1.CB.05aC
Iron1.AE.05Fe
var: Kamacite1.AE.05(Fe,Ni)
Schreibersite1.BD.05(Fe,Ni)3P
Taenite1.AE.10(Fe,Ni)
Tetrataenite1.AE.10FeNi
Group 2 - Sulphides and Sulfosalts
Troilite2.CC.10FeS
Group 4 - Oxides and Hydroxides
Baddeleyite4.DE.35ZrO2
Chromite4.BB.05Fe2+Cr3+2O4
Goethite4.00.α-Fe3+O(OH)
Ilmenite4.CB.05Fe2+TiO3
Lepidocrocite4.FE.15γ-Fe3+O(OH)
Maghemite ?4.BB.15(Fe3+0.670.33)Fe3+2O4
Magnetite4.BB.05Fe2+Fe3+2O4
Rutile4.DB.05TiO2
Tridymite4.DA.10SiO2
Group 5 - Nitrates and Carbonates
Aragonite5.AB.15CaCO3
Calcite5.AB.05CaCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Gypsum7.CD.40CaSO4 · 2H2O
Paraotwayite7.BB.45Ni(OH)2-x(SO4,CO3)0.5x
Retgersite7.CB.30NiSO4 · 6H2O
Group 8 - Phosphates, Arsenates and Vanadates
Fluorapatite8.BN.05Ca5(PO4)3F
Merrillite8.AC.45Ca9NaMg(PO4)7
Whitlockite8.AC.45Ca9Mg(PO4)6(HPO4)
Group 9 - Silicates
Anorthite9.FA.35Ca(Al2Si2O8)
Augite9.DA.15(CaxMgyFez)(Mgy1Fez1)Si2O6
Pigeonite9.DA.10(CaxMgyFez)(Mgy1Fez1)Si2O6
Zircon9.AD.30Zr(SiO4)
Unclassified Minerals, Rocks, etc.
'Albite-Anorthite Series'-
'Fayalite-Forsterite Series'-
'Limonite'-(Fe,O,OH,H2O)
'Orthopyroxene Subgroup'-
'Plessite'-
'Pyroxene Group'-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Iron
var: Kamacite
1.1.11.1(Fe,Ni)
Schreibersite1.1.21.2(Fe,Ni)3P
Taenite1.1.11.2(Fe,Ni)
Tetrataenite1.1.11.3FeNi
Semi-metals and non-metals
Graphite1.3.6.2C
Group 2 - SULFIDES
AmXp, with m:p = 1:1
Troilite2.8.9.1FeS
Group 4 - SIMPLE OXIDES
A2X3
Ilmenite4.3.5.1Fe2+TiO3
Maghemite ?4.3.7.1(Fe3+0.670.33)Fe3+2O4
AX2
Baddeleyite4.4.14.1ZrO2
Rutile4.4.1.1TiO2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Lepidocrocite6.1.2.2γ-Fe3+O(OH)
X(OH)2
Paraotwayite6.2.12.1Ni(OH)2-x(SO4,CO3)0.5x
Group 7 - MULTIPLE OXIDES
AB2X4
Chromite7.2.3.3Fe2+Cr3+2O4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Gypsum29.6.3.1CaSO4 · 2H2O
Retgersite29.6.9.1NiSO4 · 6H2O
Group 38 - ANHYDROUS NORMAL PHOSPHATES, ARSENATES, AND VANADATES
(AB)3(XO4)2
Merrillite38.3.4.4Ca9NaMg(PO4)7
Whitlockite38.3.4.1Ca9Mg(PO4)6(HPO4)
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
A5(XO4)3Zq
Fluorapatite41.8.1.1Ca5(PO4)3F
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in >[6] coordination
Zircon51.5.2.1Zr(SiO4)
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Augite65.1.3a.3(CaxMgyFez)(Mgy1Fez1)Si2O6
Pigeonite65.1.1.4(CaxMgyFez)(Mgy1Fez1)Si2O6
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Tridymite75.1.2.1SiO2
Unclassified Minerals, Mixtures, etc.
'Albite-Anorthite Series'-
Anorthite-Ca(Al2Si2O8)
'Antitaenite'-Fe3Ni
Aragonite-CaCO3
'Fayalite-Forsterite Series'-
Iron-Fe
'Limonite'-(Fe,O,OH,H2O)
'Orthopyroxene Subgroup'-
'Plessite'-
'Pyroxene Group'-

List of minerals for each chemical element

HHydrogen
H RetgersiteNiSO4 · 6H2O
H ParaotwayiteNi(OH)2-x(SO4,CO3)0.5x
H Limonite(Fe,O,OH,H2O)
H Goethiteα-Fe3+O(OH)
H Lepidocrociteγ-Fe3+O(OH)
H WhitlockiteCa9Mg(PO4)6(HPO4)
H GypsumCaSO4 · 2H2O
CCarbon
C ParaotwayiteNi(OH)2-x(SO4,CO3)0.5x
C CalciteCaCO3
C AragoniteCaCO3
C GraphiteC
OOxygen
O RetgersiteNiSO4 · 6H2O
O ParaotwayiteNi(OH)2-x(SO4,CO3)0.5x
O Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
O Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
O IlmeniteFe2+TiO3
O MerrilliteCa9NaMg(PO4)7
O ChromiteFe2+Cr23+O4
O Limonite(Fe,O,OH,H2O)
O CalciteCaCO3
O Goethiteα-Fe3+O(OH)
O Lepidocrociteγ-Fe3+O(OH)
O MagnetiteFe2+Fe23+O4
O AragoniteCaCO3
O TridymiteSiO2
O WhitlockiteCa9Mg(PO4)6(HPO4)
O BaddeleyiteZrO2
O FluorapatiteCa5(PO4)3F
O ZirconZr(SiO4)
O RutileTiO2
O AnorthiteCa(Al2Si2O8)
O GypsumCaSO4 · 2H2O
O Maghemite(Fe3+0.670.33)Fe23+O4
FFluorine
F FluorapatiteCa5(PO4)3F
NaSodium
Na MerrilliteCa9NaMg(PO4)7
MgMagnesium
Mg Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Mg Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Mg MerrilliteCa9NaMg(PO4)7
Mg WhitlockiteCa9Mg(PO4)6(HPO4)
AlAluminium
Al AnorthiteCa(Al2Si2O8)
SiSilicon
Si Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Si Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Si TridymiteSiO2
Si ZirconZr(SiO4)
Si AnorthiteCa(Al2Si2O8)
PPhosphorus
P MerrilliteCa9NaMg(PO4)7
P WhitlockiteCa9Mg(PO4)6(HPO4)
P FluorapatiteCa5(PO4)3F
P Schreibersite(Fe,Ni)3P
SSulfur
S RetgersiteNiSO4 · 6H2O
S ParaotwayiteNi(OH)2-x(SO4,CO3)0.5x
S TroiliteFeS
S GypsumCaSO4 · 2H2O
CaCalcium
Ca Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Ca Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Ca MerrilliteCa9NaMg(PO4)7
Ca CalciteCaCO3
Ca AragoniteCaCO3
Ca WhitlockiteCa9Mg(PO4)6(HPO4)
Ca FluorapatiteCa5(PO4)3F
Ca AnorthiteCa(Al2Si2O8)
Ca GypsumCaSO4 · 2H2O
TiTitanium
Ti IlmeniteFe2+TiO3
Ti RutileTiO2
CrChromium
Cr ChromiteFe2+Cr23+O4
FeIron
Fe AntitaeniteFe3Ni
Fe TetrataeniteFeNi
Fe Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Fe Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Fe TroiliteFeS
Fe IlmeniteFe2+TiO3
Fe ChromiteFe2+Cr23+O4
Fe Limonite(Fe,O,OH,H2O)
Fe Goethiteα-Fe3+O(OH)
Fe Lepidocrociteγ-Fe3+O(OH)
Fe MagnetiteFe2+Fe23+O4
Fe Iron (var: Kamacite)(Fe,Ni)
Fe Taenite(Fe,Ni)
Fe Schreibersite(Fe,Ni)3P
Fe IronFe
Fe Maghemite(Fe3+0.670.33)Fe23+O4
NiNickel
Ni AntitaeniteFe3Ni
Ni TetrataeniteFeNi
Ni RetgersiteNiSO4 · 6H2O
Ni ParaotwayiteNi(OH)2-x(SO4,CO3)0.5x
Ni Iron (var: Kamacite)(Fe,Ni)
Ni Taenite(Fe,Ni)
Ni Schreibersite(Fe,Ni)3P
CuCopper
Cu CopperCu
ZrZirconium
Zr BaddeleyiteZrO2
Zr ZirconZr(SiO4)

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Marvin, U.B. & Klein Jr, C. (1964) Meteoritic Zircon: Science 146 (3646): 919-920. (November 1964)
Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Kimura, M., Ikeda, Y., Ebihara, M., & Prinz, M. (1991). New enclaves in the Vaca Muerta mesosiderite: Petrogenesis and comparison with HED meteorites. Antarctic Meteorite Research, 4, 263.
Floran, R. J. (1978) Silicate petrography, classification, and origin of the mesosiderites - Review and new observations. In: Lunar and Planetary Science Conference, Proceedings XI. Vol. 1, 1053-1081 :New York, Pergamon Press, Inc.
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. (1998). Non-chondritic meteorites from asteroidal bodies. In: Planetary Materials (Papike, J. J. [Ed.]): Chapter 4, 195 pages. Mineralogical Society of America: Washington, DC, USA. [See, esp. - Table 41]
Rull, F., Martinez‐Frias, J., Sansano, A., Medina, J., & Edwards, H. G. M. (2004). Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites. Journal of Raman Spectroscopy, 35(6), 497-503.

External Links



This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: October 23, 2019 18:57:40 Page generated: August 7, 2019 15:38:12
Go to top of page