SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Pyrrhotite

This page kindly sponsored by Mark Kucera
Hide all sections | Show all sections

About PyrrhotiteHide

Formula:
Fe1-xS
Also given as Fe1-x (x = 0 to 0.17). The various polytypes known have slightly different stoichiometries.
Colour:
Bronze brown, bronze red, or dark brown
Lustre:
Metallic
Hardness:
3½ - 4
Specific Gravity:
4.58 - 4.65
Crystal System:
Monoclinic
Name:
Named in 1847 by Ours-Pierre-Armand Petit-Dufrénoy from Greek πνρρός "pyrrhos", flame-colored.
Pyrrhotite is found with pentlandite in basic igneous rocks, veins, and metamorphic rocks. It is also often found with pyrite, marcasite, and magnetite. It has varying magnetic powers, depending on the number of Fe vacancies in the crystal structure. A related species with no vacancies (and therefore non-magnetic), is called troilite and has been found in meteorites and rarely terrestrially.

Several polytypes are known; the most common one is pyrrhotite-4C.

Visually similar to smythite and troilite.

Compare 'UM1989-25-S:FeNi' - a representative of the Fe1-xS-Ni1-xS (Mss) solid solution.


Classification of PyrrhotiteHide

Approved, 'Grandfathered' (first described prior to 1959)
2.CC.10

2 : SULFIDES and SULFOSALTS (sulfides, selenides, tellurides; arsenides, antimonides, bismuthides; sulfarsenites, sulfantimonites, sulfbismuthites, etc.)
C : Metal Sulfides, M: S = 1: 1 (and similar)
C : With Ni, Fe, Co, PGE, etc.
2.8.10.1

2 : SULFIDES
8 : AmXp, with m:p = 1:1
3.9.1

3 : Sulphides, Selenides, Tellurides, Arsenides and Bismuthides (except the arsenides, antimonides and bismuthides of Cu, Ag and Au, which are included in Section 1)
9 : Sulphides etc. of Fe

Pronounciation of PyrrhotiteHide

Pronounciation:
PlayRecorded byCountry
Jolyon & Katya RalphUnited Kingdom

Physical Properties of PyrrhotiteHide

Metallic
Transparency:
Opaque
Colour:
Bronze brown, bronze red, or dark brown
Comment:
Tarnishes quickly
Streak:
Dark grayish black
Hardness:
3½ - 4 on Mohs scale
Hardness:
VHN100=373 - 409 kg/mm2 - Vickers
Cleavage:
None Observed
Parting:
Distinct on {0001}
Fracture:
Sub-Conchoidal
Density:
4.58 - 4.65 g/cm3 (Measured)    4.69 g/cm3 (Calculated)

Optical Data of PyrrhotiteHide

Anisotropism:
Strong
Pleochroism:
Weak

Chemical Properties of PyrrhotiteHide

Formula:
Fe1-xS

Also given as Fe1-x (x = 0 to 0.17). The various polytypes known have slightly different stoichiometries.
IMA Formula:
Fe7S8
Common Impurities:
Ni,Co,Cu

Crystallography of PyrrhotiteHide

Polytype:
Formula:
Crystal System:
Class (H-M)
Space Group:
Space Group Setting:
Cell Parameters:
Ratio:
Unit Cell Volume (calc):
Z:
Pyrrhotite-11CPyrrhotite-11HPyrrhotite-4CPyrrhotite-5CPyrrhotite-6CPyrrhotite-7H
Fe10S11Fe10S11Fe7S8Fe9S10Fe11S12Fe9S10
Orthorhombic Hexagonal Monoclinic Monoclinic Monoclinic Hexagonal 
  2/m - Prismatic2 - Sphenoidalm - Domatic 
  B2/b P21 Bb  
  C2/c P21 Cc  
a = 3.433(9) Å, b = 5.99(2) Å, c = 5.7432(5) Å
β = 90°

a = 11.88 Å, b = 6.87 Å, c = 22.79 Å
β = 90.47°
a = 6.8673(4) Å, b = 28.6536(9) Å, c = 6.8592(4) Å
β = 119.975(7)°
a = 6.8973(15) Å, b = 11.954(3) Å, c = 17.602(4) Å
α = 90°, β = 101.302(4)°, γ = 90°

a:b:c = 0.573 : 1 : 0.959 a:b:c = 1.729 : 1 : 3.317a:b:c = 0.24 : 1 : 0.239a:b:c = 0.577 : 1 : 1.472 
V 118.10 ų
(Calculated from Unit Cell)
 V 1,859.96 ų
(Calculated from Unit Cell)
V 1169.18 ųV 1423.1 ų 
   44 

Crystallographic forms of PyrrhotiteHide

Crystal Atlas:
Image Loading
Click on an icon to view
Pyrrhotite no.15 - Goldschmidt (1913-1926)
Pyrrhotite - {101}, {001}
Pyrrhotite - {100}, {001}
Pyrrhotite - Contact twin on {10-12}
3d models and HTML5 code kindly provided by www.smorf.nl.

Toggle
Edge Lines | Miller Indices | Axes

Transparency
Opaque | Translucent | Transparent

View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

Crystal StructureHide

Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File    Best | x | y | z | a | b | c
Rotation
Stop | Start
Labels
Console Off | On | Grey | Yellow
IDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0000288PyrrhotiteTokonami M, Nishiguchi K, Morimoto N (1972) Crystal structure of a monoclinic pyrrhotite (Fe7S8) American Mineralogist 57 1066-108019720293
0020728PyrrhotiteLiles D C, de Villiers J P R (2012) Redetermination of structure of 5C pyrrhotite at low temperature and at room temperature American Mineralogist 97 257-2612012Silberberg mine, Bodenmais, Germany0120
0020729PyrrhotiteLiles D C, de Villiers J P R (2012) Redetermination of structure of 5C pyrrhotite at low temperature and at room temperature American Mineralogist 97 257-2612012Silberberg mine, Bodenmais, Germany0293
0020730PyrrhotiteLiles D C, de Villiers J P R (2012) Redetermination of structure of 5C pyrrhotite at low temperature and at room temperature American Mineralogist 97 257-2612012Copper Cliff mine, Sudbury, Canada0293
0004985Pyrrhotitede Villiers J P R, Liles D C, Becker M (2009) The crystal structure of a naturally occurring 5C pyrrhotite from Sudbury, its chemistry, and vacancy distribution American Mineralogist 94 1405-14102009Copper Cliff North Mine, Sudbury, Canada0293
0005000PyrrhotiteDe Villiers J P R, Liles D C (2010) The crystal-structure and vacancy distribution in 6C pyrrhotite American Mineralogist 95 148-1522010Mponeng Mine, South Africa0293
0005001PyrrhotiteDe Villiers J P R, Liles D C (2010) The crystal-structure and vacancy distribution in 6C pyrrhotite American Mineralogist 95 148-1522010Mponeng Mine, South Africa0293
0018053PyrrhotiteAlsen N (1925) Roentgenographische Untersuchungen der Kristallstrukturen von Magnetkies, Breithauptit, Pentlandit, Millerit und verwandten Verbindungen _cod_database_code 1011178 Geologiska Foreningens i Stockholm Forhandlingar 47 19-7319250293
0018054PyrrhotiteAlsen N (1925) Roentgenographische Untersuchungen der Kristallstrukturen von Magnetkies, Breithauptit, Pentlandit, Millerit und verwandten Verbindungen _cod_database_code 1011179 Geologiska Foreningens i Stockholm Forhandlingar 47 19-7319250293
0020604PyrrhotitePowell A V, Vaqueiro P, Knight K S, Chapon L C, Sanchez R D (2004) Structure and magnetism in synthetic pyrrhotite Fe7S8: A powder neutron-diffraction study Physical Review B70 014415-122004Synthetic011
0020605PyrrhotitePowell A V, Vaqueiro P, Knight K S, Chapon L C, Sanchez R D (2004) Structure and magnetism in synthetic pyrrhotite Fe7S8: A powder neutron-diffraction study Physical Review B70 014415-122004Synthetic0298
CIF Raw Data - click here to close

Epitaxial Relationships of PyrrhotiteHide

Epitaxial Minerals:
Epitaxy Comments:
Usually, the pyrrhotite is on the galena, but codepositing intergrowths are known. The "six-fold" axis of pyrrhotite is parallel to the three-fold axis (octahedral axis) in galena.

X-Ray Powder DiffractionHide

Powder Diffraction Data:
d-spacingIntensity
5.94 Å(10)
5.72 Å(20)
5.27 Å(7)
3.44 Å(7)
2.98 Å(40)
2.87 Å(10)
2.64 Å(50)
2.255 Å(10)
2.207 Å(7)
2.064 Å(100)
1.987 Å(7)
1.909 Å(7)
1.769 Å(7)
1.720 Å(40)
1.636 Å(10)
1.606 Å(7)
1.490 Å(10)
1.476 Å(7)
1.442 Å(10)
1.433 Å(20)
1.321 Å(20)
1.291 Å(10)
1.174 Å(10)
1.167 Å(7)
1.125 Å(7)
1.105 Å(15)
1.101 Å(10)
1.065 Å(7)
1.048 Å(10)
0.993 Å(7)
0.979 Å(7)
Comments:
ICDD 22-1120 (4C polytype). See also ICDD 29-723 (4C polytype), and 24-79/24-79a (4C polytype). Data for other polytypes include: ICDD 25-411 (1C polytype); ICDD 24-220 (3C polytype); ICDD 29-724 (5C polytype); ICDD 29-725 (6C polytype); ICDD 20-534 (7C polytype); and ICDD 29-726 (11C polytype).

Synonyms of PyrrhotiteHide

Other Language Names for PyrrhotiteHide

Basque:Pirrotita
Catalan:Pirrotina
Czech:Pyrhotin
French:Pyrrhotite
Italian:Pirrotite
Japanese:磁硫鉄鉱
Lithuanian:Pirotinas
Norwegian:Magnetkis
Polish:Pirotyn
Portuguese:Pirrotite
Simplified Chinese:磁黄铁矿
Slovak:Pyrotit
Swedish:Magnetkis
Traditional Chinese:磁黃鐵礦
Ukrainian:Піротин

Varieties of PyrrhotiteHide

Cobalt-bearing PyrrhotiteA cobalt-bearing variety of pyrrhotite.
Nickel-bearing PyrrhotiteA nickel-bearing variety of pyrrhotite.
Note, however, that there are several iron-nickel sulphides.

Relationship of Pyrrhotite to other SpeciesHide

Other Members of this group:
Smythite(Fe,Ni)3+xS4 (x=0-0.3)Trig. 3m (3 2/m) : R3m
TroiliteFeSHex. 6/mmm (6/m 2/m 2/m) : P63/mmc

Common AssociatesHide

Associated Minerals Based on Photo Data:
391 photos of Pyrrhotite associated with QuartzSiO2
307 photos of Pyrrhotite associated with CalciteCaCO3
284 photos of Pyrrhotite associated with SphaleriteZnS
253 photos of Pyrrhotite associated with SideriteFeCO3
209 photos of Pyrrhotite associated with PyriteFeS2
196 photos of Pyrrhotite associated with GalenaPbS
119 photos of Pyrrhotite associated with DolomiteCaMg(CO3)2
119 photos of Pyrrhotite associated with ChalcopyriteCuFeS2
48 photos of Pyrrhotite associated with MarcasiteFeS2
48 photos of Pyrrhotite associated with ArsenopyriteFeAsS

Related Minerals - Nickel-Strunz GroupingHide

2.CC.UM2007-26-S:CuFeIrNiPtRh(Ir,Cu,Ni,Pt,Rh,Fe)9S11
2.CC.Crowningshieldite(Ni0.9Fe0.10)SHex. 6/mmm (6/m 2/m 2/m) : P63/mmc
2.CC.05AchávaliteFeSeHex. 6/mmm (6/m 2/m 2/m) : P63/mmc
2.CC.05BreithauptiteNiSbHex. 6/mmm (6/m 2/m 2/m) : P63/mmc
2.CC.05FrebolditeCoSeHex. 6/mmm (6/m 2/m 2/m) : P63/mmc
2.CC.05KotulskitePd(Te,Bi)2-x (x ≈ 0.4)Hex.
2.CC.05LangisiteCoAsHex. 6 : P63
2.CC.05NickelineNiAsHex. 6/mmm (6/m 2/m 2/m) : P63/mcm
2.CC.05Sederholmitebeta-NiSeHex. 6/mmm (6/m 2/m 2/m) : P63/mmc
2.CC.05SobolevskitePdBiHex.
2.CC.05StumpflitePtSbHex.
2.CC.05SudburyitePdSbHex.
2.CC.05JaipuriteCoSHex.
2.CC.05ZlatogoriteNiCuSb2Trig.
2.CC.10Smythite(Fe,Ni)3+xS4 (x=0-0.3)Trig. 3m (3 2/m) : R3m
2.CC.10TroiliteFeSHex. 6/mmm (6/m 2/m 2/m) : P63/mmc
2.CC.15CherepanoviteRhAsOrth. mmm (2/m 2/m 2/m) : Pnma
2.CC.15Modderite(Co,Fe)AsOrth.
2.CC.15Ruthenarsenite(Ru,Ni)AsOrth.
2.CC.15Westerveldite(Fe,Ni,Co)AsOrth.
2.CC.20MilleriteNiSTrig. 3m : R3m
2.CC.20Mäkineniteγ-NiSeTrig.
2.CC.20UM1990-38-S:CuFeIrNiPtRh(Ni,Fe,Rh,Cu,Ir,Pt)S
2.CC.25Mackinawite(Fe,Ni)9S8Tet. 4/mmm (4/m 2/m 2/m) : P4/nmm
2.CC.30Hexatestibiopanickelite(Pd,Ni)(Sb,Te)Hex.
2.CC.30VavříniteNi2SbTe2Hex. 6/mmm (6/m 2/m 2/m) : P63/mmc
2.CC.35aBraggite(Pt,Pd,Ni)STet.
2.CC.35bCooperitePtSTet. 4/mmm (4/m 2/m 2/m) : P42/mmc
2.CC.35aVysotskite(Pd,Ni)STet.

Related Minerals - Dana Grouping (8th Ed.)Hide

2.8.10.2Smythite(Fe,Ni)3+xS4 (x=0-0.3)Trig. 3m (3 2/m) : R3m

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

3.9.3PyriteFeS2Iso. m3 (2/m 3) : Pa3
3.9.4MarcasiteFeS2Orth. mmm (2/m 2/m 2/m) : Pnnm
3.9.5GreigiteFe2+Fe3+2S4Iso. m3m (4/m 3 2/m) : Fd3m
3.9.6Mackinawite(Fe,Ni)9S8Tet. 4/mmm (4/m 2/m 2/m) : P4/nmm
3.9.7Smythite(Fe,Ni)3+xS4 (x=0-0.3)Trig. 3m (3 2/m) : R3m
3.9.8AchávaliteFeSeHex. 6/mmm (6/m 2/m 2/m) : P63/mmc
3.9.9FerroseliteFeSe2Orth. mmm (2/m 2/m 2/m) : Pnnm
3.9.10FrohbergiteFeTe2Orth. mmm (2/m 2/m 2/m) : Pnnm
3.9.11LöllingiteFeAs2Orth. mmm (2/m 2/m 2/m) : Pnnm
3.9.12ArsenopyriteFeAsSMon. 2/m : P21/b
3.9.13GudmunditeFeSbSMon. 2/m : P21/b

Fluorescence of PyrrhotiteHide

Not fluorescent in UV

Other InformationHide

Magnetism:
Ferromagnetic
Notes:
Variably magnetic
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Pyrrhotite in petrologyHide

An essential component of rock names highlighted in red, an accessory component in rock names highlighted in green.

References for PyrrhotiteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Ehrenberg, H. (1932): Orientierte Verwachsungen von Magnetkies und Pentlandit. Z. Kristallogr. 82, 309-315.
Palache, C., Berman, H., Frondel, C. (1944) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Volume I: Elements, Sulfides, Sulfosalts, Oxides. John Wiley and Sons, Inc., New York. 7th edition, revised and enlarged, 834pp.: 231-235.
Kiskyras, D.A. (1950) The magnetic properties of pyrrhotite at various temperatures with special regard to its origin. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Abhandlungen, Abteilung A: Mineralogie, Petrographie 80A, 297-342.
Campbell, F.A. (1963) Sphalerite-pyrrhotite relationships at Quemont Mine. The Canadian Mineralogist: 7: 367-374.
Carpenter, R.H., Desborough, G.A. (1964) Range in solid solution and structure of naturally occurring troilite and pyrrhotite. American Mineralogist: 49: 1350-1365.
Arnold, R.G. (1967) Range in composition and structure of 82 natural terrestrial pyrrhotites. The Canadian Mineralogist: 9: 31-50.
Fleet, M.E., MacRae, N. (1969) Two-phase hexagonal pyrrhotites. The Canadian Mineralogist: 9: 699-705.
Graham, A.R. (1969) Quantitative determination of hexagonal and monoclinic pyrrhotites by X-ray diffraction. The Canadian Mineralogist: 10: 4-24.
Clark, A. H. (1970) Quantitative determination of hexagonal and monoclinic pyrrhotites by X-ray diffraction: A discussion. The Canadian Mineralogist: 10: 278-280.
Yund, R.A., Hall, H.T. (1970) Kinetics and mechanism of pyrite exsolution from pyrrhotite. Journal of Petrology: 11: 381-404.
Fleet, M.E. (1971) The crystal structure of a pyrrhotite (Fe7S8). Acta Crystallographica: B27: 1864-1867.
Tokonami, M., Nishiguchi, K., Morimoto, N. (1971) Crystal structure of a monoclinic pyrrhotite (Fe7S8). American Mineralogist: 57: 1066-1080.
Batt, A.P. (1972) Nickel distribution in hexagonal and monoclinic pyrrhotite. The Canadian Mineralogist: 11: 892-897.
Carpenter, H.R., Bailey, A.C. (1973) Application of Ro and Ar measurements to the study of pyrrhotite and troilite. American Mineralogist: 58: 440-443.
Vaughan, D.J. (1973) Variation in properties of synthetic "pyrrhotites" of composition Fe (sub 1-x) S (O< or =x< or =0.14). The Canadian Mineralogist: 11: 1008-1011.
Ramsden, A.R. (1975) Compositions of coexisting pyrrhotites, pentlandites and pyrites at Spargoville, Western Australia. The Canadian Mineralogist: 13: 133-137.
Morimoto, N., Gyobu, A., Mukaiyama, H., Izawa, E. (1975) Crystallography and stability of pyrrhotites. Economic Geology: 70: 824-833.
Corlett, M. (1977) Iron oxides and pyrrhotites from Igdlukunguaq, Disko Island, Greenland. The Canadian Mineralogist: 15: 540-545.
Fleet, M.E. (1978) The pyrrhotite-marcasite transformation. The Canadian Mineralogist: 16: 31-35.
Kuebler, L. (1981) Note on the hardness of hexagonal pyrrhotite and a method for measuring the abrasion depth in sulfides. The Canadian Mineralogist: 19: 355-359.
Durazzo, A. and Taylor, L.A. (1982): Exsolution in the mss-pentlandite system: Textural and genetic implications for Ni-sulfide ores. Mineralium Deposita 17, 313-332.
King, H.E., Jr., Prewitt, C.T. (1982) High-pressure and high-temperature polymorphism of iron sulfide (FeS). Acta Crystallographica: B38: 1877-1887. [doi:10.1107/S0567740882007523]
Campbell, F.A., Ethier, V.G. (1984) Nickel and cobalt in pyrrhotite and pyrite from the Faro and Sullivan orebodies. The Canadian Mineralogist: 22: 503-506.
Pasquariello, D. M., Kershaw, R., Passaretti, J. D., Dwight, K., Wold, A. (1984) Low-temperature synthesis and properties of Co9S8, Ni3S2, and Fe7S8. Inorganic Chemistry: 23: 872-874.
Keller-Besrest, F., Collin, G. (1990) Structural aspects of the α transition in stoichiometric FeS: identification of the high-temperature phase. Journal of Solid State Chemistry: 84: 194-210.
Barkov, A.Y., Laajoki, K.V.O., Men'shikov, Y.P., Alapieti, T.T., Sivonen, S.J. (1997) First terrestrial occurrence of titanium-rich pyrrhotite, marcasite and pyrite in a fenitized xenolith from the Khibina alkaline complex, Russia. The Canadian Mineralogist: 35: 875-885.
Nesbitt, H.W., Schaufuss, A.G., Scaini, M., Bancroft, G.M., Szargan, R. (2001) XPS measurement of fivefold and sixfold coordinated sulfur in pyrrhotites and evidence for millerite and pyrrhotite surface species. American Mineralogist: 86: 318-326.
Farrell, S.P., Fleet, M.E. (2002) Phase separation in (Fe,Co)1-xS monosulfide solid-solution below 450°C, with consequences for coexisting pyrrhotite and pentlandite in magmatic sulfide deposits. The Canadian Mineralogist: 40: 33-46.
Froese, E. (2003) Point defects in pyrrhotite. The Canadian Mineralogist: 41: 1061-1067.
Selivanov, E.N., Vershinin, A.D., Gulyaeva, R.I. (2003) Thermal expansion of troilite and pyrrhotine [sic] in helium and air. Inorganic Materials: 39: 1097-1102.
Powell, A.V., Vaqueiro, P., Knight, K.S., Chapon, L.C., Sanchez, R.D. (2004) Structure and magnetism in synthetic pyrrhotite Fe7S8: a powder neutron-diffraction study. Phys. Rev., Serie 3.B - Condensed Matter: 70: 014415-1 - 014415-12.
Wang, H., Salveson, I. (2005) A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe1-xS (0≤x≤0.125): polymorphs, phase relations and transitions, electronic and magnetic structures. Phase Transitions: 78: 547-567.
Makovicky, E. (2006) Crystal structures of sulfides and other chalcogenides. Reviews in Mineralogy and Geochemistry: 61: 7-125.
de Villiers, J.P.R., Liles, D.C. and Becker, M. (2009) The crystal structure of a naturally occurring 5C pyrrhotite from Sudbury, its chemistry, and vacancy distribution. American Mineralogist 94, 1405-1410. [but see Liles & de Villiers, 2012]
de Villiers, J.P.R., Liles, D.C. (2010) The crystal-structure and vacancy distribution in 6C pyrrhotite. American Mineralogist: 95: 148-152.
Elliot, A.D. (2010): Structure of pyrrhotite 5C (Fe9S10). Acta Crystallographica B66, 271-279.
Becker, M., de Villiers, J., Bradshaw, D. (2010) The mineralogy and crystallography of pyrrhotite from selected nickel and PGE ore deposits. Economic Geology: 105: 1025-1037.
Harries, D., Pollok, K., Langenhorst, F. (2011) Translation interface modulation in NC-pyrrhotites: Direct imaging by TEM and a model toward understanding partially disordered structural states. American Mineralogist: 96: 716-731.
Liles, D.C., de Villiers, J.P.R. (2012) Redetermination of the structure of 5C pyrrhotite at low temperature and at room temperature. American Mineralogist: 97: 257-261.
Ssu Han Li, Yen-Hua Chen, Jey-Jau Lee, Hwo-Shuenn Sheu (2018): Phase transition of iron sulphide minerals under hydrothermal conditions and magnetic investigations. Physics and Chemistry of Minerals 45, 27-38.
Lei Jin, Dimitrios Koulialias, Michael Schnedler, Andreas U. Gehring, Mihály Pósfai, Philipp Ebert, Michalis Charilaou, Robin E. Schäublin, Chun-Lin Jia, Jörg F. Löffler, and Rafal. E. Dunin-Borkowski (2021): Atomic-scale characterization of commensurate and incommensurate vacancy superstructures in natural pyrrhotites. American Mineralogist 106, 82-96.

Internet Links for PyrrhotiteHide

Significant localities for PyrrhotiteHide

Showing 13 significant localities out of 10,001 recorded on mindat.org.

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Australia
 
  • Tasmania
    • West Coast municipality
      • Zeehan district
        • North Dundas
Econ Geol (1987) 82:291-307; Kitto, P. (1992) The geological and structural controls on mineraUsation at the Renison tin mine. BulL geoL Surv. Tasm. 70:97-117.; Kitto, P.A., 1994, Structural and Geochemical controls on Mineralisation at Renison, Tasmania. Unpub. PhD thesis, Uni. Tas.
Brazil
 
  • Minas Gerais
    • Nova Lima
Henwood, W.J. (1871): Transactions of the Royal Geological Society of Cornwall 8(1), 168-370; Rocks & Min.: 63:43.
Canada
 
  • British Columbia
    • Slocan Mining Division
      • Riondel
Grice, J.D., Gault, R.A. (1977) The Bluebell Mine, Riondel, British Columbia, Canada. The Mineralogical Record 8:1, 33-36. Moynihan, D.P., Pattison, D.R. (2011) The origin of mineralized fractures at the Bluebell mine site, Riondel, British Columbia. Economic Geology, 106:6, 1043-1058.
  • Québec
    • Nord-du-Québec
      • Jamésie
Tavchandjian, O. (1992). Analyse quantitative de la distribution spatiale de la fracturation et de la minéralisation dans les zones de cisaillement: applications aux gisements du complexe du lac Dore (Chicougamau-Québec). Université du Québec à Chicoutimi.
Italy
 
  • Tuscany
    • Lucca Province
      • Stazzema
European Journal of Mineralogy, 12 (2)
Kosovo
 
  • Mitrovica District
    • Mitrovica
      • Trepča valley
        • Trepča complex
Féraud J. (1979) - La mine " Stari-Trg " (Trepca, Yougoslavie) et ses richesses minéralogiques. Avec la collaboration de Mari D. et G. (1979) Minéraux et Fossiles, n° 59-60, p. 19-28; Joana Koà Odziejczyk ,Jaroslav Pršek , Halilqela ( 2012) MIneralogical Diversity In Orebodies Within Xth Horizon.At Stan Terg Mine, Kosovo. Buletini i Shkencave Gjeologjike pp84-; Kołodziejczyk, J., Pršek, J., Melfos, V., Voudouris, P. C., Maliqi, F., & Kozub-Budzyń, G. (2015). Bismuth minerals from the Stan Terg deposit (Trepça, Kosovo). Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 192(3), 317-333.; Kołodziejczyk, J., Pršek, J., Voudouris, P. C., & Melfos, V. (2017). Bi-sulphotellurides associated with Pb–Bi–(Sb±Ag, Cu, Fe) sulphosalts: an example from the Stan Terg deposit in Kosovo. Geologica Carpathica, 68(4), 366-381.
Norway
 
  • Buskerud
Neumann, H. (1944): Silver deposits at Kongsberg. Norges Geologiske Undersøkelse 162 p. 63
  • Nordland
    • Grane
      • Svenningdalen
Vogt, J.H.L. (1900): Søndre Helgeland. Norges Geologiske Undersøkelse. 29, 1-178; Neumann, H. (1985): Norges Mineraler. Norges Geologiske Undersøkelse Skrifter 68, p.26.
Peru
 
  • Áncash
    • Bolognesi Province
      • Huallanca District
        • Huallanca
Econ Geol (1985) 80:416-478
Romania
 
  • Maramureș
    • Baia Mare
      • Chiuzbaia (Kisbánya)
Palache et al. (1944) Dana's System of Mineralogy, Seventh ed., Vol. 1: 450.; Zsivny, V. and Naray-Szabo, I.V. (1947) Parajamesonit, ein neues Mineral von Kisbanya. Schweizerische mineralogische und petrographische Mitteilungen: 27: 183-189.; Fleischer, M. (1949) New mineral names. American Mineralogist: 34: 133.; Cook N.J. and Damian, G. (1997) New data on "Plumosite" and Other Sulfosalt Minerals from the Herja Vein Deposit, Baia Mare District, Rumania. Geologica Carphathica: 48: 387-399.; Damian, G. (2012) The genesis of the base metal ore deposit from Herja. Studia UBB, Geologia, 48(1), 85-100.
Russia
 
  • Primorsky Krai
    • Dalnegorsk Urban District
      • Dalnegorsk
[MinRec 32:9]; Rogulina, L.I., and Sveshnikova, O.L. (2008): Geology of Ore Deposits 50(1), 60-74.; Dobovol'skaya, M. G., Baskina, V. A., Balashova, S. P., Kenisarin, A. M., Arakelyants, M. M., Klimachev, L. A., & Muravitskaya, G. N. (1990). Order of Formation of the Ores and Mafic Dikes of the Nikolayevsk Deposit (Southern Primor'ye). International Geology Review, 32(4), 391-403.; Vasilenko, G.P. (2001) The Dalnegorsk Ore District. pp98-124 in Khanchuk, A.I., Gonevchuk, G.A. & Seltmann, R. (Eds) Metallogeny of the Pacific Northwest (Russian Far East): Tectonics, Magmatism and Metallogeny of Active Continental Margins. IAGOD Guidebook series 11, Dalnauka Publishing House, Vladivostok 2004, 176 p
Switzerland
 
  • Valais
    • Westlich Raron
Ansermet, S. (2004) Les minéraux du tunnel du Lötschberg en Valais. Tracé, 130, 6, 24-28; Ansermet, S. (2004) Pristline mineral assemblages in deep Alpine veins from the Lötschberg base tunnel (Wallis, Switzerland). 5th International Conference "Mineralogy & Museums", Paris, September 5-8th 2004. Bulletin de Liaison de la Societé Française de Minéralogie et Cristallographie, 16, 2, 26; Arlt, T. (2004) Neuigkeiten: Herausragende Pyrrhotine aus dem Lötschberg-Basistunnel. Schweizer Strahler, 2/2004, 2-3 and 24; Weiß, S. (2004) Lapis Aktuell: Riesenkristall aus dem Lötschbergtunnel im Wallis. Lapis, 29, 3, 5.
USA
 
  • Connecticut
    • Tolland Co.
      • Willington
        • West Willington
Ague, J. J. (1995): Deep Crustal Growth of Quartz, Kyanite and Garnet into Large-Aperature, fluid-filled fractures, northeastern Connecticut, USA. Journal of Metamorphic Geology: 13: 299-314.
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2021, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us - Report a bug/vulnerability Current server date and time: March 7, 2021 05:43:20 Page generated: March 7, 2021 01:12:49
Go to top of page