Help mindat.org|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportAdd Glossary Item
StatisticsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Vaterite

This page is currently not sponsored. Click here to sponsor this page.
Formula:
CaCO3
System:
Hexagonal
Colour:
Colorless
Hardness:
3
Name:
Named after Heinrich Vater [September 5, 1859 Bremen, Germany - February 10, 1930 Dresden, Germany], Professor of Mineralogy and Chemistry, Tharandt, Saxony (Germany).
Polymorph of:
A rare CaCO3 modification that is metastable below approx. 400°C.
May be stabilised by sulphate (Fernández-Díaz et al., 2010).

Vaterite is actually composed of at least two different crystallographic structures that coexist within a pseudo–single crystal. The major structure exhibits hexagonal symmetry; the minor structure, existing as nanodomains within the major matrix, is still unknown (Kabalah-Amitai et al., 2013).

Not uncommon as a biomineral.

Classification of Vaterite

Valid - first described prior to 1959 (pre-IMA) - "Grandfathered"
5.AB.20

5 : CARBONATES (NITRATES)
A : Carbonates without additional anions, without H2O
B : Alkali-earth (and other M2+) carbonates
14.1.2.1

14 : ANHYDROUS NORMAL CARBONATES
1 : A(XO3)
11.4.3

11 : Carbonates
4 : Carbonates of Ca
mindat.org URL:
http://www.mindat.org/min-4161.html
Please feel free to link to this page.

Physical Properties of Vaterite

Sub-Vitreous, Waxy
Diaphaneity (Transparency):
Transparent
Colour:
Colorless
Streak:
White
Hardness (Mohs):
3
Tenacity:
Brittle
Fracture:
Irregular/Uneven, Splintery
Density:
2.645 g/cm3 (Measured)    2.645 g/cm3 (Calculated)

Crystallography of Vaterite

Crystal System:
Hexagonal
Class (H-M):
6/mmm (6/m 2/m 2/m) - Dihexagonal Dipyramidal
Space Group:
P63/mmc
Cell Parameters:
a = 4.13Å, c = 8.49Å
Ratio:
a:c = 1 : 2.056
Unit Cell Volume:
V 125.41 ų (Calculated from Unit Cell)
Z:
6
Morphology:
Thin fibers, spherulitic aggregates.
Comment:
Wang, J.W. & Becker, U. (2009): Structure and carbonate orientation of vaterite (CaCO3). Am. Mineral. 94, 380-386.
X-Ray Powder Diffraction Data:
d-spacingIntensity
3.57 (55)
3.30 (100)
2.73 (95)
2.065 (60)
1.858 (25)
1.823 (70)
1.647 (25)
Comments:
See also 33-268; 13-192 (synthetic)

Optical Data of Vaterite

Type:
Uniaxial (+)
RI values:
nω = 1.550 nε = 1.650
Birefringence:
0.10
Max Birefringence:
δ = 0.100
Image shows birefringence interference colour range (at 30µm thickness) and does not take into account mineral colouration.
Surface Relief:
Moderate
Optical Extinction:
Parallel

Chemical Properties of Vaterite

Formula:
CaCO3
Essential elements:
All elements listed in formula:
CAS Registry number:
471-34-1

CAS Registry numbers are published by the American Chemical Society

Relationship of Vaterite to other Species

5.AB.05CalciteCaCO3
5.AB.05Gaspéite(Ni,Mg,Fe)CO3
5.AB.05MagnesiteMgCO3
5.AB.05OtaviteCdCO3
5.AB.05RhodochrositeMnCO3
5.AB.05SideriteFeCO3
5.AB.05SmithsoniteZnCO3
5.AB.05SpherocobaltiteCoCO3
5.AB.10AnkeriteCa(Fe2+,Mg)(CO3)2
5.AB.10DolomiteCaMg(CO3)2
5.AB.10KutnohoriteCa(Mn,Mg,Fe)(CO3)2
5.AB.10MinrecorditeCaZn(CO3)2
5.AB.15AragoniteCaCO3
5.AB.15CerussitePbCO3
5.AB.15StrontianiteSrCO3
5.AB.15WitheriteBaCO3
5.AB.25HuntiteCaMg3(CO3)4
5.AB.30NorsethiteBaMg(CO3)2
5.AB.35AlstoniteBaCa(CO3)2
5.AB.40OlekminskiteSr(Sr,Ca,Ba)(CO3)2
5.AB.40ParalstoniteBaCa(CO3)2
5.AB.45BarytocalciteBaCa(CO3)2
5.AB.50Carbocernaite(Ca,Na)(Sr,Ce,Ba)(CO3)2
5.AB.55Benstonite(Ba,Sr)6(Ca,Mn)6Mg(CO3)13
5.AB.60JuangodoyiteNa2Cu(CO3)2
11.4.1CalciteCaCO3
11.4.2AragoniteCaCO3
11.4.4MonohydrocalciteCaCO3 · H2O
11.4.5IkaiteCaCO3 · 6H2O
11.4.6DolomiteCaMg(CO3)2
11.4.7HuntiteCaMg3(CO3)4
11.4.8SergeeviteCa2Mg11(CO3)13 · 10H2O

Other Names for Vaterite

Name in Other Languages:
German:Vaterit
Simplified Chinese:六方球方解石
球文石
Spanish:Vaterita

Other Information

Not known to fluoresce.
Thermal Behaviour:
Dry crystals convert to calcite when heated to about 440°.
Other Information:
Converts to aragonite or calcite when boiled in water. Converts to calcite when boiled in NaCl solution.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for Vaterite

Reference List:
Doelter, C. (1911) Handbuch der Mineral-chemie (in 4 volumes divided into parts): 1: 113.

Meigen, W. (1911): Über kohlensauren Kalk. Verhandl. Ges. Deut. Naturforscher u. Ärtzte, 82, 120-124.

Johnston, Merwin, and Williamson (1916) American Journal of Science: 41: 473.

Gibson, Wyckoff, and Merwin (1925) American Journal of Science: 10: 325 (as Vaterite-B).

Heide (1925) Centralblatt für Mineralogie, Geologie und Paleontologie, Stuttgart: 198.

Hintze, Carl (1926) Handbuch der Mineralogie. Berlin and Leipzig. 6 volumes: 1 [3B]: 2883.

Yoshimura (1930) Japanese Journal of Geology and Geography: 7: 3.

American Mineralogist (1931): 16: 770-772.

Donnay (1936) Société géologique de Belgique, Liége, Bulletin: 59: 215.

Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: Halides, Nitrates, Borates, Carbonates, Sulfates, Phosphates, Arsenates, Tungstates, Molybdates, Etc. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged: 181-182.

McConnel, J.D.C. (1960): Vaterite from Ballycraigy, Larne, Northern Ireland. Mineralogical Magazine: 32: 534-544.

American Mineralogist (1960): 45: 1316.

Meyer, H.J. (1969): Struktur und Fehlordnung des Vaterits. Zeitschrift für Kristallographie, 128, 183–212.

Turnbull, A. G. (1973): Thermochemical study of vaterite. Geochimica et Cosmochimica Acta 37, 1593-1601.

Plummer, L. N. & Busenberg, E. (1982): The solubilities of calcite, aragonite, and vaterite in carbon dioxide-water solutions between 0 and 90° C, and an evaluation of the aqueous model for the system calcium carbonate-carbon dioxide-water. Geochimica et Cosmochimica Acta 46, 1011-1040.

De Visscher, A. & Vanderdeelen, J. (2003): Estimation of the Solubility Constant of Calcite, Aragonite, and Vaterite at 25° C Based on Primary Data Using the Pitzer Ion Interaction Approach. Monatshefte für Chemie 134, 769-775.

Wang, J.W. & Becker, U. (2009): Structure and carbonate orientation of vaterite (CaCO3). Am. Mineral. 94, 380-386.

Emilie M. Pouget, Paul H. H. Bomans, Archan Dey, Peter M. Frederik, Gijsbertus de With and Nico A. J. M. Sommerdijk (2010): The Development of Morphology and Structure in Hexagonal Vaterite. J. Am. Chem. Soc. 132, 11560–11565.

Lurdes Fernández-Díaz, Ángeles Fernández-González and Manuel Prieto (2010): The role of sulfate groups in controlling CaCO3 polymorphism. Geochimica et Cosmochimica Acta 74, 6064-6076.

Kabalah-Amitai, L., Mayzel, B., Kauffmann, Y., Fitch, A.N., Bloch, L., Gilbert, P.U.P.A., Pokroy, B. (2013): Vaterite Crystals Contain Two Interspersed Crystal Structures. Science, 340, 454-457.

Internet Links for Vaterite

Localities for Vaterite

map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.
(TL) indicates type locality for a valid mineral species. (FRL) indicates first recorded locality for everything else. ? indicates mineral may be doubtful at this locality. All other localities listed without reference should be considered as uncertain and unproven until references can be found.
Australia
 
  • Tasmania
    • Central Plateau
Bottrill & Baker (in prep) Catalogue of minerals of Tasmania
Austria
 
  • Salzburg
    • Hohe Tauern
      • Obersulzbach valley
        • Hopffeld area
Schebesta, K. (1986): Neue Mineralien vom Hopffeldboden im Obersulzbachtal. Lapis 11 (4), 9-18; 42; Kolitsch, U. (2011): 1688) „Vaterit“ vom Hopffeldboden, Obersulzbachtal: eine Fehlbestimmung. P. 155-156 in Niedermayr, G. et al. (2011): Neue Mineralfunde aus Österreich LX. Carinthia II, 201./121., 135-186.
Canada
 
  • Québec
    • Montérégie
      • La Vallée-du-Richelieu RCM
        • Mont Saint-Hilaire
HORVÁTH, L. and HORVÁTH-PFENNINGER, E. (2000) Die Mineralien des Mont Saint-Hilaire. Lapis, 25, Nr. 7/8, 23-61 (in German). [p. 61]; HORVÁTH, L., and PFENNINGER‑HORVÁTH, E. (2000) I minerali di Mont-Saint-Hilaire (Québec, Canada) Rivista Mineralogica Italiana, XXIV, 140-202 (in Italian with English summary). [p. 146 & 152]
    • Saguenay-Lac-Saint-Jean
      • Le Fjord-du-Saguenay RCM
        • Saint-Honoré
Fournier, A. (1993)
FOURNIER, A. (1993) Magmat!c and hydrothermal controls of LREE mineralization of the St.-Honoré carbonatite, Québec. M.Sc. thesis, McGill University, Montreal, Canada. 95p.
Germany
 
  • Baden-Württemberg
    • Black Forest
      • Wolfach
        • Oberwolfach
          • Rankach valley
WALENTA, K. (1995): Neue Mineralfunde von der Grube Clara. 6. Folge, 2. Teil. - Lapis 20 (6), 41 und 46-49.
  • Lower Saxony
    • Harz
      • Clausthal-Zellerfeld
        • Bockswies veins
          • Oberschulenberg
Schnorrer-Köhler, G. (1991): Mineralogische Notizen V, Der Aufschluss, Vol. 42, 155-171
  • Rhineland-Palatinate
    • Eifel
      • Daun
        • Üdersdorf
Schüller, W., Betz, V., Die Mineralien vom Emmelberg, Lapis 12/1986
      • Hillesheim
        • Zilsdorf
Hentschel. G., Die Mineralien der Eifelvulkane, Weise Verlag München, 1983
      • Mayen
        • Ettringen
          • Bellerberg volcano
[Hentschel, G., Seltene Minerale in Calcium-reichen Auswürflingen vom Bellerberg bei Mayen/Eifel, Aufschluß 29, 77-83, 1978] [Lapis, 15 (5), 9-36]
            • Southern lava flow
Hentschel, G., Dent Glasser, L.S., Lee, C.K. (1983): Jasmundite. Ca22(Si04)8O4S2. a new mineral, N. Jb. Mineral., Mh., 337-342.
      • Mendig
        • Niedermendig
Hentschel, G., Die Mineralien der Eifelvulkane, Weise Verlag München, 1983
Hungary
 
  • Somogy Co.
Szakáll & Gatter: Hun. Min. Spec., 1993
Israel
 
  • Negev
Gross, S. (1977): The Mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel, Bulletin no. 70, 80 pp.
Italy
 
  • Campania
    • Naples Province
      • Somma-Vesuvius Complex
        • Monte Somma
          • Ercolano
            • San Vito
Pavel M. Kartashov analytical data, Luigi Chiappino material
Japan
 
  • Hokkaido
    • Tokachi Province
      • Ashoro-cho (Asyoro-tyo)
Ito et al. (1999) Ganseki-Koubutsu-Koshogaku Zasshi, 94, 176-182.
Namibia
 
  • Otjozondjupa Region
    • Grootfontein District
      • Kombat
ex J Lamond Micro Collection (ex Rob Sielecki)
Palestine
 
  • West Bank
    • Hatrurim formation
Shulamit Gross (1977) The mineralogy of the Hatrurim Formation, Israel. Geol. Surv. of Israel, bull. # 70.
Poland
 
  • Upper Silesia (Śląskie)
    • Upper Silesian Coal Basin
      • Katowice area
        • Siemianowice Śląskie
Kruszewski L. 2006: Oldhamite-periclase-portlandite-fluorite assemblage and coexisting minerals of burnt dump in Siemianowice Śląskie - Dąbrówka Wielka area (Upper Silesia, Poland) - preliminary report. Mineralogia Polonica Special Papers, vol.28, 118-120
Romania
 
  • Brașov Co.
    • Racoş Commune
Szakáll, S., Kristály, F., 2010. Mineralogy of Székelyland, Eastern Transylvania, Romania. Sfântu Gheorghe-Miercurea Ciuc-Târgu Mureş. 2010.
  • Harghita Co.
    • Odorheiu Secuiesc (Székelyudvarhely; Oderhellen)
      • Racoş (Racoşu de Jos)
Szakáll, S. & Kristály, F., Eds. (2010): Mineralogy of Székelyland, Eastern Transylvania, Romania. Csík County Nature and Conservation Society, Miercurea-Ciuc, Romania, 321 pp.
  • Hunedoara Co.
    • Hunedoara
      • Boșorod
Dumitras, D.-G., Constantinescu, E., Marincea, S., and Bourgier, V. (2005): Proceedings of the Annual Scientific Session of The Geological Society of Romania, Rosia Montana, 20-21 May 2005, 31-36.; D. Dumitras , Si. Marincea (2000) Phosphates In The Bat Guano Deposit From The "Dry" Cioclovina Cave, Sureanu Mountains, Romania. Romanian Journal of Mineral Devosits Vol 79 Suppl pp 43-45
Russia
 
  • Northern Region
    • Murmanskaja Oblast'
      • Kola Peninsula
www.koeln.netsurf.de/~w.steffens/khib.htm
      • Northern Karelia
New Data on Minerals (2004): 39: 50-64
  • Urals Region
    • Southern Urals
      • Chelyabinsk Oblast'
Cesnokov, B., Kotrly, M. and Nisanbajev, T. (1998): Brennende Abraumhalden und Aufschlüsse im Tscheljabinsker Kohlenbecken - eine reiche Mineralienküche. Mineralien-Welt, 9 (3), 54-63 (in German).
South Africa
 
  • Northern Cape Province
    • Kalahari manganese field
      • Hotazel
Minerals of South Africa
UK
 
  • Northern Ireland
    • Co. Antrim
      • Larne
Peter G. Embrey (1978) Fourth Supplementary List of British Minerals. Mineralogical Magazine 42:169-177
USA
 
  • Arizona
    • Maricopa Co.
Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 412.
  • Michigan
    • Houghton Co.
      • Osceola
Mineralogy of Michigan (E. W. Heinrich & G. W. Robinson)
  • New Mexico
    • Otero Co.
      • Cornudas Mts
XRD - Laszlo Horvath collection
  • Tennessee
    • Smith Co.
      • Central Tennessee Ba-F-Pb-Zn District
        • Carthage
www.excaliburmineral.com
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2015, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: August 29, 2015 20:01:22 Page generated: August 29, 2015 05:22:28