IMPORTANT MESSAGE. We need your support now to keep mindat.org running. Click here to find out why.
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for Educators
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

McDermitt Mine [including older Cordero mine complex], Opalite District, Humboldt Co., Nevada, USA

This page kindly sponsored by Michael Cox
Key
Lock Map
Latitude & Longitude (WGS84): 41° 55' 9'' North , 117° 48' 44'' West
Latitude & Longitude (decimal): 41.91943,-117.81225
GeoHash:G#: 9rknrp5wr
Area:2.0 km2
Locality type:Complex
Age:Up to Ma
Geologic Time:Miocene
Dating method:K/Ar adularia in ore zone
Reference for age:Noble et al., 1988
Köppen climate type:BSk : Cold semi-arid (steppe) climate
Other/historical names associated with this locality:Opalite Mining District


The Cordero mines and McDermitt mine are located in the Opalite mercury mining district in the United States of America. The Opalite mercury mining district encompasses locations that are both in the state of northern Nevada and in the state of southern Oregon. The deposits are all related to a large volcanic center (caldera complex) called the McDermitt caldera complex. Mines in the Opalite district include those listed below[1][2][3].

Bretz Mine, Malheur Co., OR
Cordero Mine, Humboldt Co., NV
Corderito Mine, Humboldt Co., NV
Crofoot Project, Humboldt Co., NV
Disaster Peak Property, Humboldt Co., NV
Lenway Mine, Humboldt Co., NV
McDermitt Mine, Humboldt Co., NV
Opalite Mine, Malheur Co., OR
Ruja Mine, Humboldt Co., NV

The Cordero mine was the first discovery of mercury in the district, quickly followed by the Bretz and Opalite mines to the north. These were both underground and open cut operations. In the 1970s, mercury was discovered in tuffaceous lake sediments adjacent to and just north of the Cordero mine. This deposit was exploited exclusively by open cut mining. It was named the McDermitt mine, and operated by Placer Amex until acquired by Barrick Gold Corporation. The McDermitt mine was the last operating primary mercury production mine in the USA when it ceased operations in 1990. The patented mining claims of the McDermitt mine were still owned by Barrick Gold as of March 2016, but the mine is closed and there is no mining activity in the district.

The following summary prepared by Michael Cox is drawn from the extensive body of references and more than five weeks of detailed field examination of the pit during the period of late-2014 to early-2017.

The McDermitt open pit mine was excavated in lacustrine and/or fluvial tuff under a thin mantle of recent (Pleistocene) alluvial gravel. According to Giraud[4] (1986) and McCormack[5] (1986) the tuff was only locally reworked by water prior to consolidation. Fragments are nearly always angular, suggesting the source material was unconsolidated pyroclastic debris rather than eroded consolidated rock layers. The parent rock is pyroclastic, with angular fragments of peralkaline rhyolite that contains alkali feldspar phenocrysts, sometimes several centimeters long or larger. During violent gaseous eruptions, the parent magma was fragmented at the vent, blown upward, and deposited on the surface, including into and over lakes and streams. The resulting pyroclastic ash and debris was laid down on the surface of the land existing at the time and later consolidated into rock. The volcanic rocks vary with depth and age, but the main ash deposit is broadly called McDermitt Tuff by Henry et al.[6] (2016), and according to them, the main eruption of tuff occurred at 16.35±0.03 Ma. After the main tuff eruption, the volcanic source chamber collapsed to form an oval surface depression called a caldera. The McDermitt caldera measures 25 miles (40 km) north-south by 14 miles (22 km) to 19 miles (30 km) east-west. Hydrothermal fluids then deposited the antimony and mercury mineralization and silicified the parent tuff. This occurred at about 15.7±0.4 Ma based on Noble et al.[7] (1988) dating adularia from the open pit ore. Sometimes the silica and ore replacement is so thorough the parent rock textures and grains can no longer be recognized, even in thin sections under the microscope.

Alternative Label Names

This is a list of additional names that have been recorded for mineral labels associated with this locality in the minID database. This may include previous versions of the locality name hierarchy from mindat.org, data entry errors, and it may also include unconfirmed sublocality names or other names that can only be matched to this level.

McDermitt Mine (including older Cordero mine complex), Opalite District, Humboldt Co., Nevada, USA
McDermitt Mine (Cordero Mine; Old Cordero Mine), Opalite District, Humboldt Co., Nevada, USA

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


38 valid minerals. 3 (TL) - type locality of valid minerals.

Detailed Mineral List:

Alunite
Formula: KAl3(SO4)2(OH)6
Reference: NBMG Bull 59 Geology and Mineral Resources of Humboldt County, Nevada
Baryte
Formula: BaSO4
Reference: NBMG Spec. Pub. 31 Minerals of Nevada
Buddingtonite
Formula: (NH4)(AlSi3)O8
Reference: NBMG Spec. Pub. 31 Minerals of Nevada
Calcite
Formula: CaCO3
Reference: NBMG Spec. Pub. 31 Minerals of Nevada
Calomel
Formula: (Hg2)2+Cl2
Reference: NBMG Spec. Pub. 31 Minerals of Nevada; McCormack, J.K. (2000): Mineralium Deposita 35(8), 796-798.
Chapmanite
Formula: Fe3+2Sb3+(Si2O5)O3(OH)
Reference: NBMG Spec. Pub. 31 Minerals of Nevada
Cinnabar
Formula: HgS
Reference: [AmMin 84:194]; McCormack, J.K. (2000): Mineralium Deposita 35(8), 796-798.
'Clays'
Reference: NBMG Bull 59 Geology and Mineral Resources of Humboldt County, Nevada
'Clinoptilolite'
Reference: McCormack, J.K, Dickson, F.W., and Leshendok, M.P. (1991) Radtkeite, Hg3S2ClI, a new mineral from the McDermitt mercury deposit, Humboldt County, Nevada. American Mineralogist 76: 1715-1721
Copiapite
Formula: Fe2+Fe3+4(SO4)6(OH)2 · 20H2O
Reference: NBMG Spec. Pub. 31 Minerals of Nevada
Corderoite (TL)
Formula: Hg2+3S2Cl2
Reference: [AmMin 84:194]
Cristobalite
Formula: SiO2
Reference: Bull. Soc. Franç. Minéralo. Cristallo. , 1974, 97, p. 501.
Eglestonite
Formula: (Hg2+2)3OCl3(OH)
Reference: Rocks & Minerals, Nov. 1999; McCormack, J.K. (2000): Mineralium Deposita 35(8), 796-798.
Fibroferrite
Formula: Fe3+(SO4)(OH) · 5H2O
Reference: NBMG Spec. Pub. 31 Minerals of Nevada
Fluorite
Formula: CaF2
Reference: NBMG Bull 59 Geology and Mineral Resources of Humboldt County, Nevada
Goethite
Formula: α-Fe3+O(OH)
Reference: NBMG Spec. Pub. 31 Minerals of Nevada
Gypsum
Formula: CaSO4 · 2H2O
Reference: NBMG Spec. Pub. 31 Minerals of Nevada
Hematite
Formula: Fe2O3
Reference: NBMG Bull 59 Geology and Mineral Resources of Humboldt County, Nevada
'Heulandite subgroup'
Reference: NBMG Bull 59 Geology and Mineral Resources of Humboldt County, Nevada
Jarosite
Formula: KFe3+ 3(SO4)2(OH)6
Reference: NBMG Bull 59 Geology and Mineral Resources of Humboldt County, Nevada
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: NBMG Spec. Pub. 31 Minerals of Nevada
Kenhsuite (TL)
Formula: Hg2+3S2Cl2
Reference: [AmMin 84:194]
Kleinite
Formula: (Hg2N)(Cl,SO4) · nH2O
Reference: NBMG Spec. Pub. 31 Minerals of Nevada; McCormack, J.K. (2000): Mineralium Deposita 35(8), 796-798.
'Limonite'
Formula: (Fe,O,OH,H2O)
Reference: NBMG Bull 59 Geology and Mineral Resources of Humboldt County, Nevada
Lithiophorite
Formula: (Al,Li)MnO2(OH)2
Reference: Gail Dunning Collection
Marcasite
Formula: FeS2
Reference: NBMG Spec. Pub. 31 Minerals of Nevada
Melanterite
Formula: Fe2+(H2O)6SO4 · H2O
Reference: NBMG Spec. Pub. 31 Minerals of Nevada
Mercury
Formula: Hg
Reference: NBMG Spec. Pub. 31 Minerals of Nevada
Montmorillonite
Formula: (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Reference: NBMG Spec. Pub. 31 Minerals of Nevada
Montroydite
Formula: HgO
Reference: NBMG Spec. Pub. 31 Minerals of Nevada
Mosesite ?
Formula: (Hg2N)(Cl,SO4,MoO4) · H2O
Reference: NBMG Spec. Pub. 31 Minerals of Nevada
Opal
Formula: SiO2 · nH2O
Reference: NBMG Bull 59 Geology and Mineral Resources of Humboldt County, Nevada
Opal var: Hyalite
Formula: SiO2 · nH2O
Reference: Visual Id by Michael Cox
Pyrite
Formula: FeS2
Reference: NBMG Bull 59 Geology and Mineral Resources of Humboldt County, Nevada
Quartz
Formula: SiO2
Reference: NBMG Bull 59 Geology and Mineral Resources of Humboldt County, Nevada
Quartz var: Chalcedony
Formula: SiO2
Reference: NBMG Bull 59 Geology and Mineral Resources of Humboldt County, Nevada
Radtkeite (TL)
Formula: Hg2+3S2ICl
Reference: AM 76 (1991), 1715; HB3 (1997); NM 90-94 (1997)
Realgar
Formula: As4S4
Reference: NBMG Spec. Pub. 31 Minerals of Nevada
Schuetteite
Formula: Hg2+3(SO4)O2
Reference: Gunnar Färber
'Stibiconite'
Formula: Sb3+Sb5+2O6(OH)
Reference: Gail Dunning Collection
Stibnite
Formula: Sb2S3
Reference: NBMG Spec. Pub. 31 Minerals of Nevada
Terlinguacreekite
Formula: Hg2+3Cl2O2
Reference: Canadian Mineralogist 43:1055-1060
Terlinguaite
Formula: (Hg2+2)Hg2+2Cl2O2
Reference: Rocks & Minerals, Nov. 1999
Tridymite
Formula: SiO2
Reference: NBMG Spec Pub 31 Minerals of Nevada
Tripuhyite
Formula: Fe3+Sb5+O4
Reference: Mineralogical Magazine, February 2003, Vol. 67(1), pp. 31–46

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Mercury1.AD.05Hg
Group 2 - Sulphides and Sulfosalts
Cinnabar2.CD.15aHgS
Corderoite (TL)2.FC.15aHg2+3S2Cl2
Kenhsuite (TL)2.FC.15bHg2+3S2Cl2
Marcasite2.EB.10aFeS2
Pyrite2.EB.05aFeS2
Radtkeite (TL)2.FC.15dHg2+3S2ICl
Realgar2.FA.15aAs4S4
Stibnite2.DB.05Sb2S3
Group 3 - Halides
'Calomel'3.AA.30(Hg2)2+Cl2
Eglestonite3.DD.05(Hg2+2)3OCl3(OH)
Fluorite3.AB.25CaF2
Kleinite3.DD.35(Hg2N)(Cl,SO4) · nH2O
Mosesite ?3.DD.30(Hg2N)(Cl,SO4,MoO4) · H2O
Terlinguacreekite3.DD.55Hg2+3Cl2O2
Terlinguaite3.DD.20(Hg2+2)Hg2+2Cl2O2
Group 4 - Oxides and Hydroxides
Cristobalite4.DA.15SiO2
Goethite4.00.α-Fe3+O(OH)
Hematite4.CB.05Fe2O3
Lithiophorite4.FE.25(Al,Li)MnO2(OH)2
Montroydite4.AC.15HgO
Opal4.DA.10SiO2 · nH2O
var: Hyalite4.DA.10SiO2 · nH2O
Quartz4.DA.05SiO2
var: Chalcedony4.DA.05SiO2
Stibiconite4.DH.20Sb3+Sb5+2O6(OH)
Tridymite4.DA.10SiO2
Tripuhyite4.DB.05Fe3+Sb5+O4
Group 5 - Nitrates and Carbonates
'Calcite'5.AB.05CaCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
'Alunite'7.BC.10KAl3(SO4)2(OH)6
'Baryte'7.AD.35BaSO4
Copiapite7.DB.35Fe2+Fe3+4(SO4)6(OH)2 · 20H2O
Fibroferrite7.DC.15Fe3+(SO4)(OH) · 5H2O
Gypsum7.CD.40CaSO4 · 2H2O
Jarosite7.BC.10KFe3+ 3(SO4)2(OH)6
Melanterite7.CB.35Fe2+(H2O)6SO4 · H2O
Schuetteite7.BB.40Hg2+3(SO4)O2
Group 9 - Silicates
'Buddingtonite'9.FA.30(NH4)(AlSi3)O8
Chapmanite9.ED.25Fe3+2Sb3+(Si2O5)O3(OH)
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Montmorillonite9.EC.40(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Unclassified Minerals, Rocks, etc.
Clays-
Clinoptilolite-
Heulandite subgroup-
Limonite-(Fe,O,OH,H2O)

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Mercury1.1.7.1Hg
Group 2 - SULFIDES
AmXp, with m:p = 1:1
Cinnabar2.8.14.1HgS
Realgar2.8.21.1As4S4
AmBnXp, with (m+n):p = 2:3
Stibnite2.11.2.1Sb2S3
AmBnXp, with (m+n):p = 1:2
Marcasite2.12.2.1FeS2
Pyrite2.12.1.1FeS2
Group 4 - SIMPLE OXIDES
AX
Montroydite4.2.6.1HgO
A2X3
Hematite4.3.1.2Fe2O3
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Miscellaneous
Lithiophorite6.4.1.1(Al,Li)MnO2(OH)2
Group 9 - NORMAL HALIDES
AX
Calomel9.1.8.1(Hg2)2+Cl2
AX2
Fluorite9.2.1.1CaF2
Group 10 - OXYHALIDES AND HYDROXYHALIDES
A3(O,OH)2Xq
Corderoite (TL)10.3.3.1Hg2+3S2Cl2
Radtkeite (TL)10.3.6.1Hg2+3S2ICl
A2(O,OH)Xq
Kleinite10.4.3.1(Hg2N)(Cl,SO4) · nH2O
Terlinguaite10.4.2.1(Hg2+2)Hg2+2Cl2O2
Am(O,OH)pXq
Eglestonite10.5.4.1(Hg2+2)3OCl3(OH)
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Baryte28.3.1.1BaSO4
Group 29 - HYDRATED ACID AND NORMAL SULFATES
A2B(XO4)2·xH2O
Mosesite ?29.3.8.1(Hg2N)(Cl,SO4,MoO4) · H2O
AXO4·xH2O
Gypsum29.6.3.1CaSO4 · 2H2O
Melanterite29.6.10.1Fe2+(H2O)6SO4 · H2O
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)m(XO4)pZq, where m:p>2:1
Schuetteite30.1.13.1Hg2+3(SO4)O2
(AB)2(XO4)Zq
Alunite30.2.4.1KAl3(SO4)2(OH)6
Jarosite30.2.5.1KFe3+ 3(SO4)2(OH)6
Group 31 - HYDRATED SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)(XO4)Zq·xH2O
Fibroferrite31.9.12.1Fe3+(SO4)(OH) · 5H2O
Miscellaneous
Copiapite31.10.5.1Fe2+Fe3+4(SO4)6(OH)2 · 20H2O
Group 44 - ANTIMONATES
A2X2O6(O,OH,F)
'Stibiconite'44.1.1.1Sb3+Sb5+2O6(OH)
AX2O6
Tripuhyite44.2.1.3Fe3+Sb5+O4
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
Chapmanite71.1.3.2Fe3+2Sb3+(Si2O5)O3(OH)
Sheets of 6-membered rings with 2:1 clays
Montmorillonite71.3.1a.2(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Cristobalite75.1.1.1SiO2
Quartz75.1.3.1SiO2
Tridymite75.1.2.1SiO2
Si Tetrahedral Frameworks - SiO2 with H2O and organics
Opal75.2.1.1SiO2 · nH2O
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Buddingtonite76.1.2.1(NH4)(AlSi3)O8
Unclassified Minerals, Rocks, etc.
'Clays'-
'Clinoptilolite'-
'Heulandite subgroup'-
Kaolinite-Al2(Si2O5)(OH)4
Kenhsuite (TL)-Hg2+3S2Cl2
'Limonite'-(Fe,O,OH,H2O)
Opal
var: Hyalite
-SiO2 · nH2O
Quartz
var: Chalcedony
-SiO2
Terlinguacreekite-Hg2+3Cl2O2

List of minerals for each chemical element

HHydrogen
H AluniteKAl3(SO4)2(OH)6
H Buddingtonite(NH4)(AlSi3)O8
H ChapmaniteFe23+Sb3+(Si2O5)O3(OH)
H CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
H Eglestonite(Hg22+)3OCl3(OH)
H FibroferriteFe3+(SO4)(OH) · 5H2O
H Goethiteα-Fe3+O(OH)
H GypsumCaSO4 · 2H2O
H Opal (var: Hyalite)SiO2 · nH2O
H JarositeKFe3+ 3(SO4)2(OH)6
H KaoliniteAl2(Si2O5)(OH)4
H Kleinite(Hg2N)(Cl,SO4) · nH2O
H Limonite(Fe,O,OH,H2O)
H Lithiophorite(Al,Li)MnO2(OH)2
H MelanteriteFe2+(H2O)6SO4 · H2O
H Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
H Mosesite(Hg2N)(Cl,SO4,MoO4) · H2O
H OpalSiO2 · nH2O
H StibiconiteSb3+Sb25+O6(OH)
LiLithium
Li Lithiophorite(Al,Li)MnO2(OH)2
CCarbon
C CalciteCaCO3
NNitrogen
N Buddingtonite(NH4)(AlSi3)O8
N Kleinite(Hg2N)(Cl,SO4) · nH2O
N Mosesite(Hg2N)(Cl,SO4,MoO4) · H2O
OOxygen
O AluniteKAl3(SO4)2(OH)6
O BaryteBaSO4
O Buddingtonite(NH4)(AlSi3)O8
O CalciteCaCO3
O Quartz (var: Chalcedony)SiO2
O ChapmaniteFe23+Sb3+(Si2O5)O3(OH)
O CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
O CristobaliteSiO2
O Eglestonite(Hg22+)3OCl3(OH)
O FibroferriteFe3+(SO4)(OH) · 5H2O
O Goethiteα-Fe3+O(OH)
O GypsumCaSO4 · 2H2O
O HematiteFe2O3
O Opal (var: Hyalite)SiO2 · nH2O
O JarositeKFe3+ 3(SO4)2(OH)6
O KaoliniteAl2(Si2O5)(OH)4
O Kleinite(Hg2N)(Cl,SO4) · nH2O
O Limonite(Fe,O,OH,H2O)
O Lithiophorite(Al,Li)MnO2(OH)2
O MelanteriteFe2+(H2O)6SO4 · H2O
O Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
O MontroyditeHgO
O Mosesite(Hg2N)(Cl,SO4,MoO4) · H2O
O OpalSiO2 · nH2O
O QuartzSiO2
O SchuetteiteHg32+(SO4)O2
O StibiconiteSb3+Sb25+O6(OH)
O TerlinguacreekiteHg32+Cl2O2
O Terlinguaite(Hg22+)Hg22+Cl2O2
O TridymiteSiO2
O TripuhyiteFe3+Sb5+O4
FFluorine
F FluoriteCaF2
NaSodium
Na Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
MgMagnesium
Mg Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
AlAluminium
Al AluniteKAl3(SO4)2(OH)6
Al Buddingtonite(NH4)(AlSi3)O8
Al KaoliniteAl2(Si2O5)(OH)4
Al Lithiophorite(Al,Li)MnO2(OH)2
Al Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
SiSilicon
Si Buddingtonite(NH4)(AlSi3)O8
Si Quartz (var: Chalcedony)SiO2
Si ChapmaniteFe23+Sb3+(Si2O5)O3(OH)
Si CristobaliteSiO2
Si Opal (var: Hyalite)SiO2 · nH2O
Si KaoliniteAl2(Si2O5)(OH)4
Si Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Si OpalSiO2 · nH2O
Si QuartzSiO2
Si TridymiteSiO2
SSulfur
S AluniteKAl3(SO4)2(OH)6
S BaryteBaSO4
S CinnabarHgS
S CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
S CorderoiteHg32+S2Cl2
S FibroferriteFe3+(SO4)(OH) · 5H2O
S GypsumCaSO4 · 2H2O
S JarositeKFe3+ 3(SO4)2(OH)6
S KenhsuiteHg32+S2Cl2
S Kleinite(Hg2N)(Cl,SO4) · nH2O
S MarcasiteFeS2
S MelanteriteFe2+(H2O)6SO4 · H2O
S Mosesite(Hg2N)(Cl,SO4,MoO4) · H2O
S PyriteFeS2
S RadtkeiteHg32+S2ICl
S RealgarAs4S4
S SchuetteiteHg32+(SO4)O2
S StibniteSb2S3
ClChlorine
Cl Calomel(Hg2)2+Cl2
Cl CorderoiteHg32+S2Cl2
Cl Eglestonite(Hg22+)3OCl3(OH)
Cl KenhsuiteHg32+S2Cl2
Cl Kleinite(Hg2N)(Cl,SO4) · nH2O
Cl Mosesite(Hg2N)(Cl,SO4,MoO4) · H2O
Cl RadtkeiteHg32+S2ICl
Cl TerlinguacreekiteHg32+Cl2O2
Cl Terlinguaite(Hg22+)Hg22+Cl2O2
KPotassium
K AluniteKAl3(SO4)2(OH)6
K JarositeKFe3+ 3(SO4)2(OH)6
CaCalcium
Ca CalciteCaCO3
Ca FluoriteCaF2
Ca GypsumCaSO4 · 2H2O
Ca Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
MnManganese
Mn Lithiophorite(Al,Li)MnO2(OH)2
FeIron
Fe ChapmaniteFe23+Sb3+(Si2O5)O3(OH)
Fe CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
Fe FibroferriteFe3+(SO4)(OH) · 5H2O
Fe Goethiteα-Fe3+O(OH)
Fe HematiteFe2O3
Fe JarositeKFe3+ 3(SO4)2(OH)6
Fe Limonite(Fe,O,OH,H2O)
Fe MarcasiteFeS2
Fe MelanteriteFe2+(H2O)6SO4 · H2O
Fe PyriteFeS2
Fe TripuhyiteFe3+Sb5+O4
AsArsenic
As RealgarAs4S4
MoMolybdenum
Mo Mosesite(Hg2N)(Cl,SO4,MoO4) · H2O
SbAntimony
Sb ChapmaniteFe23+Sb3+(Si2O5)O3(OH)
Sb StibiconiteSb3+Sb25+O6(OH)
Sb StibniteSb2S3
Sb TripuhyiteFe3+Sb5+O4
IIodine
I RadtkeiteHg32+S2ICl
BaBarium
Ba BaryteBaSO4
HgMercury
Hg Calomel(Hg2)2+Cl2
Hg CinnabarHgS
Hg CorderoiteHg32+S2Cl2
Hg Eglestonite(Hg22+)3OCl3(OH)
Hg KenhsuiteHg32+S2Cl2
Hg Kleinite(Hg2N)(Cl,SO4) · nH2O
Hg MercuryHg
Hg MontroyditeHgO
Hg Mosesite(Hg2N)(Cl,SO4,MoO4) · H2O
Hg RadtkeiteHg32+S2ICl
Hg SchuetteiteHg32+(SO4)O2
Hg TerlinguacreekiteHg32+Cl2O2
Hg Terlinguaite(Hg22+)Hg22+Cl2O2

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Schuette, C.N. (1938) Quicksilver in Oregon. Oregon Department of Geology and Mineral Industries Bulletin No. 4, 172 pp.
Yates, R.G. (1942) Quicksilver deposits of the Opalite district, Malheur County, Oregon and Humboldt County, Nevada. United States Geological Survey Bulletin 931-N, 319-348.
Bailey, E.H. and Phoenix, D.A. (1944) Quicksilver deposits in Nevada. University Nevada Bulletin 38, 206 pp.
United States Geological Survey (1946) Minerals yearbook 1946, uranium and thorium, Mineral Industry Surveys, Annual Reviews for Minerals Yearbook, 1946, U.S. Government Printing Office, Reston, VA.
Frondel, C. (1956) Mineral composition of gummite. American Mineralogist, 41, 539-568.
Bailey, E.H., Hildebrand, F.A., Christ, C.L. and Fayhe, J.J. (1959) Schuetteite, a new supergene mercury mineral. American Mineralogist, 44, 1026-1038.
Brooks, H.C. (1959) Quicksilver in Oregon. Oregon Department of Geology and Mineral Industries. Presented at the geology session of the 1959 Pacific Northwest Regional Conference, AIME.
Curry, D.L. (1960) The geology of the Cordero quicksilver mine area, Humboldt County, Nevada. M.S. thesis, University of Oregon, Eugene, Oregon, 58 pp.
Fisk, Elwin L. (1961) Cinnabar at Cordero, where they find it...how they find it. Mining Engineering, November, 1228-1230.
Puff, H. and Kohlschmidt, R. (1962) Quecksilberchalkogenid-halogenide. Naturwissenschaften, 49, 299.
Brooks, H.C. (1963) Quicksilver in Oregon. Oregon Department of Geology and Mineral Industries Bulletin B-055, 223 pp.
Wilden, Ronald (1964) Geology and Mineral Deposits of Humboldt County, Nevada. Nevada Bureau of Mines and Geology, Bulletin 59, 164 pp., 3 plates.
U.S. Bureau of Mines Staff (1965) Mercury potential of the United States. USBM IC 8252, Part 2 of 2, pp. 224-225.
Carlson, E.H. (1967) The growth of HgS and Hg3S2Cl2 single crystals by a vapor phase method. Journal of Crystal Growth, 1, 271-277.
Fisk, E.L. (1968) Cordero mine, Opalite mining district. In J.D. Ridge (Ed.) Ore Deposits of the United States, 1933-1967, vol. 2, pp. 1573-1591. AIME Publ.
Frueh, A.J. and Gray, N. (1968) Confirmation and refinement of the structure of Hg3S2Cl2. Acta Crystallographica, B24, 156-157.
Albers, J. P. and Kleinhampl, F. J. (1970) Spatial relation of mineral deposits to Tertiary volcanic centers in Nevada: U.S. Geol. Survey Prof. Paper 700-C, pp. C1-C10.
Greene, R.C. (1972) Preliminary geologic map of the Jordan Meadow quadrangle, Nevada-Oregon. U.S. Geological Survey Misc. Field Studies Map MF-341.
Foord, E.E., Berendsen, P., and Storey, L.O. (1974) Corderoite, first natural occurrence of α-Hg3S2Cl2, from the Cordero mercury deposit, Humboldt County, Nevada. American Mineralogist, 59, 652-655.
McKee, E.H., Greene, R.C., and Foord, E.E. (1975) Chronology of volcanism, tectonism, and mineralization of the McDermitt caldera, Nevada-Oregon (abs.) Geological Society of America, Abs. with Programs, 1, No. 5, 629-630.
Greene, R.C. (1976) Volcanic rocks of the McDermitt caldera, Nevada-Oregon. United States Geological Survey Open-File Report 76-753, 80 pp.
McKee, E.H. (1976) Origin of the McDermitt caldera in Nevada and Oregon and related mercury deposits. Trans. AIME, 260, 196-199.
Roper, M.W. (1976) Hot springs mercury deposition at McDermitt mine, Humboldt County, Nevada. Trans. AIME, 260, 192-195.
Rytuba, J.J. (1976) Geology and ore deposits of the McDermitt caldera, Nevada-Oregon. United States Geological Survey Open-File Report 76-535, 9 pp.
Speer, W.E. (1977) Geology of the McDermitt mine area, Humboldt County, Nevada. M.S. thesis, University of Arizona, Tucson, Arizona, 65 pp., 2 plates.
Rytuba, J.J. and Glanzman, R.K. (1978) Relation of mercury, uranium, and lithium deposits to the McDermitt caldera complex. United States Geological Survey Open-File Report 78-926, 31 pp.
Bennet, R.E. (1979, Sept. 6) United States Department of the Interior, Bureau of Land Management, Serial N-20319, Mineral Report, Mineral Patent Application of Placer Amex, Inc. and Sterling Mineral Venture, 24 pp.
Glanzman, R.K., McCarthy, J.H., and Rytuba, J.J. (1978) Lithium in the McDermitt Caldera, Nevada and Oregon. Energy, 3(3), 347–353.
Glanzman, R.K. and Rytuba, J.J. (1979) Zeolite-clay mineral zonation of volcaniclastic sediments within the McDermitt caldera complex of Nevada and Oregon. United States Geological Survey Open-File Report, 79-1668, 25 pp.
Rytuba, J.J., Conrad, W.K., and Glanzman, R.K. (1979) Uranium, thorium, and mercury distribution through the evolution of the McDermitt caldera complex. United States Geological Survey Open-File Report 79-541, 27 pp.
Rytuba, J.J. and Glanzman, R.K. (1979) Relation of mercury, uranium, and lithium deposits to the McDermitt caldera complex, Nevada-Oregon. Nevada Bureau of Mines and Geology, Report 33, pp. 109–117.
Wallace, A.B., Drexler, J.W., Grant, N.K., and Noble, D.C. (1980) Icelandite and aenigmatite-bearing pantellerite from the McDermitt caldera complex, Nevada-Oregon. Geology, 8, 380–384.
Jenkins, R.E. (1981) Minerals of Nevada (Draft # 6). Unpublished manuscript, 280 pp.
Roper, M.W. and Wallace, A.B. (1981) Geology of the Aurora uranium prospect, Malheur County, Oregon, in Goodell, P.C. and Waters, A.C. (Eds.) Uranium in Volcanic and Volcaniclastic Rocks. AAPG Studies in Geology, 13, 81–88.
Wallace, A.B. and Roper, M.W. (1981) Geology and uranium deposits along the northeastern margin, McDermitt caldera complex, Oregon. AAPG Studies in Geology, 13, 73–79.
Castor, S.B., Mitchell, T.P., and Quade, J.G. (1982) National Uranium Resource Evaluation, Vya quadrangle, Nevada, California and Oregon. United States Department of Energy Open-File Report PGJ/F135(82).
Hetherington, J.J. (1983) The Geology and Mineralization at the McDermitt Mercury Mine, Nevada. M.S. thesis, University of Washington, Seattle, Washington, 54 pp., 14 plates.
Rytuba, J.J., Bateson, J.T., Curtis, D.L., and Cox, G.A. (1983) Geologic map of the Little Whitehorse Creek quadrangle, Harney and Malheur Counties, Oregon. United States Geological Survey Miscellaneous Field Studies Map 1472, scale 1:24,000.
Rytuba, J.J. and McKee, E.H. (1984) Peralkaline ash flow tuffs and calderas of the McDermitt volcanic field, southeastern Oregon and north central Nevada. Journal of Geophysical Research, 89, 8616–8628.
Farmer, J.R. (1984, December) Review of National Emission Standards for Mercury. United States EPA Office of Air Quality, Report number EPA-450/3-84-014, 72 pp.
Dayvault, R.D., Castor, S.B., and Berry, M.R. (1985) Uranium associated with volcanic rocks of the McDermitt Caldera, Nevada and Oregon, in Uranium deposits in volcanic rocks: Proceedings of a technical committee meeting: Panel Proceedings Series-International Atomic Energy Agency, STI/PUB/690, 379-409.
Hetherington, J.J. and Cheney, E.S. (1985) Origin of the opalite breccia at the McDermitt mercury mine, Nevada. Economic Geology, 80, 1981-1987.
Mining Annual Review (1985) Mining Journal, 120.
Storey, L.O. (1985) History of the discovery of the McDermitt mine, McDermitt, Nevada. Trans. AIME, 260.
Giraud, R.E. (1986) Stratigraphy of Volcanic Sediments in the McDermitt mine, Humboldt County, Nevada. M.S. thesis, University of Idaho Graduate School, Moscow, Idaho, 87 pp., 11 plates.
McCormack, J.K. (1986) Paragenesis and origin of sediment-hosted mercury ore at the McDermitt mine, McDermitt, Nevada. M.S. thesis, University of Nevada, Reno, Nevada, 97 pp.
Minor, S.A. (1986) Stratigraphy and structure of the western Trout Creek Mountains and northern Bilk Creek Mountains, Harney County, Oregon, and Humboldt County, Nevada. M.S. thesis, University of Colorado, Boulder, 177 pp.
Leszcykowski, A.M. (1987) Mineral resources of the Disaster Peak study area, Harney and Malheur Counties, Oregon and Humboldt County, Nevada. United States Bureau of Mines Mineral Land Assessment/1987 Open-File Report 65-87.
Schlottmann, J.D. Jr. (1987) Last Mercury Mine Closes. California Mining Journal, April, 17-20.
Noble, D.C., McCormack, J.K., McKee, E.H., Silberman, M.L., and Wallace, A.B. (1988) Time of mineralization in the evolution of the McDermitt caldera complex, Nevada-Oregon, and the relation of middle Miocene mineralization in the northern Great Basin to coeval regional basaltic magmatic activity. Economic Geology, 83, 859–863.
McCormack, J.K., Dickson, F.W., and Leshendok, M.P. (1991) Radtkeite, Hg3S2Cl(I), a new mineral from the McDermitt mercury deposit, Humboldt County, Nevada. American Mineralogist, 76, 1715-1721.
Pierce, K.L. and Morgan, L.A. (1992) The track of the Yellowstone hotspot—Volcanism, faulting, and uplift. Geological Society of American Memoir, 179, 1–53.
Rytuba, J.J. and Heropoulos, C. (1992) Mercury; an important byproduct in epithermal gold systems, in DeYoung, J.H., Jr. and Hammarstrom, J.M. (eds.) Contributions to commodity geology research. United States Geological Survey Bulletin 1877, D1-D8.
Rytuba, J.J. (1994) Evolution of volcanic and tectonic features in caldera settings and their importance in the localization of ore deposits. Economic Geology, 89, 1687–1696.
Jensen, M.C., Rota, J.C., and Foord, E.E. (1995) The Gold Quarry mine, Carlin-trend, Eureka County, Nevada. Mineralogical Record, 26(5), 449-469.
Castor, S.B., Henry, C.D., and Shevenell, L.A. (1996) Volcanic rock-hosted uranium deposits in northwestern Nevada and southeastern Oregon: Possible sites for studies of natural analogues for the potential high-level nuclear waste repository at Yucca Mountain, Nevada. Nevada Bureau of Mines and Geology Open-File Report 96-3, 86 pp.
McCormack, J.K. (1996) Large-scale arcuate structures concentric with the McDermitt Caldera Complex. In Coyner, A.R. and Fahey, P.L. (Eds.) Geology and Ore Deposits of the American Cordillera. Proceedings of the Symposium (Reno-Sparks, Nevada, April 1995). Geological Society of Nevada, Reno, Nevada.
McCormack, J.K. (1997) Mercury sulf-halide minerals and crystalline phases, and experimental formation conditions, in the system Hg3S2Cl2-Hg3S2Br2-Hg3S2I2, Ph.D. thesis, University of Nevada, Reno, Nevada, 154 pp.
McCormack, J.K. and Dickson, F.W. (1998) Kenhsuite, ϒ-Hg3S2Cl2, A new mineral species from the McDermitt Mercury deposit, Humboldt County, Nevada. Canadian Mineralogist, 36, 201-206.
Jambor, J.L. and Roberts, A.C. (1999) New Mineral Names, Kenhsuite. American Mineralogist, 84, 194.
Castor, S.B. and Henry, C.D. (2000) Geology, geochemistry, and origin of volcanic rock-hosted uranium deposits in northwestern Nevada and southeastern Oregon, U.S.A. Ore Geology Reviews, 16, 1–40.
McCormack, J.K. (2000) The darkening of cinnabar in sunlight. Mineralium Deposita, 35(8), 796-798.
Tewalt, N.A. and Carrington, R.G. (2001) U.S. gallium exploration report with report on Cordero property for Gold Canyon Resources (unpublished report, 31 pp.).
Tingley, J.V. and LaPointe, D.D. (2002) Metals. In Meeuwig, D. (Ed.) The Nevada Mineral Industry 2001, Nevada Bureau of Mines and Geology, University of Nevada, Reno, Printing Services, Mackay School of Mines, 23, 66 pp.
United States Geological Survey (2002) Minerals Yearbook, gallium, Mineral Industry Surveys, Annual Reviews for Minerals Yearbook, 2002, U.S. Government Printing Office, Reston, VA.
Anderson, D. (2003) Environmental cleanup site information (ECSI) database site summary report-details for site ID: 2491, Opalite mine, ID: 2493, Bretz mine. Oregon Department of Environmental Quality, Portland, Oregon 97204. www.deq.state.or.us/
Jones, R., Lapp, T., and Wallace, D. (2003) Locating and Estimating Air Emissions From Sources of Mercury and Mercury Compounds. EPA Office of Air and Radiation, Report 454-R93023, 303 pp.
Rytuba, J.J., John, D.A., Foster, A., Ludington, S.D. and Kotlyar, B. (2003) Hydrothermal enrichment of gallium in zones of advanced argillic alteration—examples from the Paradise Peak and McDermitt ore deposits, Nevada. In Bliss, J.D., Moyle, P.R., and Long, K.R. (Eds.) Contributions to Industrial-Minerals Research, Chapter C, Bulletin 2209-C, 16 pp.
Ainsworth, B. (2004) Geological report for Clan Resources Ltd., Vancouver, BC, Aurora Project, Malheur County, OR, SEC Exhibit 99-1, 34 pp.
Castor, S.B. and Ferdock, G.C. (2004) Minerals of Nevada. Nevada Bureau of Mines and Geology Special Publication Vol. 31, University of Nevada Press, Reno, NV. 512 pp.
Dunning, G.E., Hadley, T.A., Magnasco, J., Christy, A.G., and Cooper, J.F., Jr. (2005) The Clear Creek mine, San Benito County, California: A unique mercury locality. Mineralogical Record, 36(4), 337-363.
Myers, Gregory (2005) Technical report of the Aurora uranium project, Malheur County, Oregon, prepared for Quincy Energy Corp by Dorado Minerals, Woodinville, WA, 82 pp.
Roberts, A.C., Gault, R.A., Paar, W.H., Cooper, M.A., Hawthorne, F.C., Burns, P.C., Cisneros, S., and Foord, E.E. (2005) Terlinguacreekite, Hg2+3O2Cl2, a new mineral species from the Perry pit, Mariposa mine, Terlingua mining district, Brewster County, Texas, USA. Canadian Mineralogist, 43, 1055-1060.
Childs, J.F. (2007, August 1) Cordero gold-silver project technical report, Opalite Mining District, McDermitt, Nevada. (Report prepared for Silver Predator Corporation, Reno, Nevada), Cordero-43-101_09-04-07-Final.pdf, 68 pp., 5 plates.
Lerch, D.W. et al. (2007) Crustal structure of the northwestern Basin and Range Province and its transition to unextended volcanic plateaus. Geochemistry, Geophysics, Geosystems, 8(2), 21 pp., doi:10.1029/2006GC001429
Vinals, J. and Calvo, M. (2007) Corderoite, kenhsuite and perroudite, mercury sulfohalides from Chovar, Castello, Spain. Revista de Minerales, 3(3), 46-49.
Carew, Timothy J. (2008) NI 43-101 Technical Report and Resource Estimation for the Cordero Gallium Project, Humboldt County, Nevada, USA (prepared for Gold Canyon Resources, Inc., 35 pp.).
Coble, M.A. and Mahood, G.A. (2008) New geologic evidence for additional 16.5-15.5 Ma silicic calderas in northwest Nevada related to initial impingement of the Yellowstone hot spot. IOP Publishing, Inc., Collapse Calderas Workshop, Conference 1, Volume 3, Earth and Environmental Science, 4 pp.
Pierce, K.L. and Morgan, L.A. (2009) Is the track of the Yellowstone hotspot driven by a deep mantle plume?—review of volcanism, faulting, and uplift in light of new data. Journal of Volcanology and Geothermal Research, 188, 1–25.
Stetson, S.J., Gray, J.E., Wanty, R.B., and Macalady, D.L. (2009) Isotopic variability of mercury in ore, mine-waste calcine, and leachates of mine-waste calcine from areas mined for mercury. Environmental Science & Technology, 43(19), 7331-7336.
United States Geological Survey (2010) Minerals Yearbook, lithium, Mineral Industry Surveys, Annual Reviews for Minerals Yearbook, 2010, U.S. Government Printing Office, Reston, VA.
Causey, J. Douglas (2011) Mining Claim Activity on Federal Land in the United States. United States Geological Survey, Data Series 290, Version 4.0, 31 pp and data files.
Castor, S.B. and Ferdock, G.C. (2012) Minerals of Nevada. Nevada Bureau of Mines and Geology Special Publication 31, 560 pp.
Coble, M.A. and Mahood, G.A. (2012) Initial impingement of the Yellowstone plume located by widespread silicic volcanism contemporaneous with Columbia River flood basalts. Geology, 40(7), 655-658.
Marvin-DiPasquale, M., Alpers, C.N., Dunkelman, T., Bauer, R., Ellis, D.N., and Slowey, A.J. (2012) Mercury bioaccessibility associated with calcine waste in McDermitt, Nevada, in conference proceedings of Hardrock Mining 2012, Advancing Solutions for a New Legacy, sponsored by the U.S. EPA, April 3-5, 2012, Renaissance Denver Hotel, Denver, CO, pp. 105-106.
Henry, C.D., Castor, S.B., Starkel, W.A., Ellis, B.S., Wolff, J.A., Heizler, M.T., and McIntosh, W.C. (2012) Geologic mapping, volcanology, mineralization, and high precision 40Ar / 39Ar dating of early Yellowstone hotspot magmatism. Abstract V33B-2850 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3-7 Dec.
Benson, T.R., Mahood, G.A., and Coble, M.A. (2013) An intense 16.5-16.0 Ma episode of rhyolitic volcanism associated with flood basalt dike emplacement at McDermitt Caldera Field and High Rock Caldera Complex, Nevada and Oregon. American Geophysical Union Fall Meeting, Dec., abstract V33E-2828.
Henry, C.D. and John, D.A. (2013) Magmatism, ash-flow tuffs, and calderas of the ignimbrite flareup in the western Nevada volcanic field, Great Basin, USA. Geosphere, 9, 951–1008.
Luckett, M., Mahood, G.A., and Benson, T.R. (2013) Earliest Silicic Volcanism Associated with Mid-Miocene Flood Basalts: Tuffs Interbedded with Steens Basalt, Nevada and Oregon. American Geophysical Union, Fall Meeting, Dec., Abstract V33E-2829, 1 pp.
Blumefeld, J. (2014) Environmental photo selection of McDermitt and Cordero mine areas. www.flickr.com/photos/epar9jeb.
Starkel, W.A. (2014) Mapping, geologic evolution and petrogenesis of the McDermitt volcanic center, northern Nevada and southern Oregon, USA. Ph.D. thesis, Washington State University, School of the Environment, 407 pp.
Benson, T.R., Mahood, G.A., and Coble, M.A. (2014) Magmatic enrichments of energy-critical elements Li, Ga, and REE in rhyolites of McDermitt Volcanic Field, High Rock Caldera Complex, and Buff Peak identified by in situ SHRIMP-RG analysis of melt inclusions in quartz. Paper 343-12, October. Geological Society of America Abstracts with Programs, 46(6), 826.
Benson, T.R., Mahood, G.A., and Coble, M.A. (2015) Controls on the enrichment of energy-critical elements (Li, Ga, REE) in weakly peralkaline magmas of the Mid-Miocene McDermitt Volcanic Field, Oregon and Nevada, based on in situ SHRIMP-RG analyses of quartz-hosted melt inclusions. GSA Annual Meeting, Baltimore, November.
Benson, T.R. and Mahood, G.A. (2015) The Oldest Known Caldera Associated with the Yellowstone Hotspot: New Geologic Mapping, Geochemistry, and 40Ar/39Ar Geochronology for the Northern McDermitt Volcanic Field, Northern Nevada and Southeastern Oregon. American Geophysical Union Fall Meeting, December.
Benson, T.R., Mahood, G.A., Coble, M.A., and Grove, M.J. (2016) New geological mapping and 40Ar/39Ar geochronology demonstrate that rhyolite volcanism mirrors northward propagation of Mid-Miocene Columbia River Flood Basalts. GSA Rocky Mountain Section Meeting, Moscow, Idaho, May.
Benson, T.R. and Mahood, G.A. (2016) A tale of two swarms: mapping of calderas and 40Ar/39Ar geochronology delineate two distinct Steens Basalt fissure systems. American Geophysical Union Fall Meeting, December.
Carew, T.J. and Rossi, M.E. (2016) June, Independent Technical Report for the Lithium Nevada Project, Nevada, USA, prepared for Lithium Americas, Inc. by SRK Consulting, Vancouver, British Columbia, Canada, 132 pp.
Coble, M.A. and Mahood, G.A. (2016) Geology of the High Rock caldera complex, northwest Nevada, and implications for intense rhyolitic volcanism associated with flood basalt magmatism and the initiation of the Snake River Plain-Yellowstone trend. Geosphere, 12(1), 58-113.
Henry, Christopher D., Castor, Steven B., Starkel, William A., Ellis, Ben S., Wolff, John A., McIntosh, William C., and Heizler, Matthew T. (2016) Preliminary geologic map of the McDermitt caldera, Humboldt County, Nevada and Harney and Malheur counties, Oregon. Nevada Bureau of Mines and Geology Open-File Report 16-1, 1 plate, 8 pp.
Mahood, G.A. and Benson, T.R. (2016) 40Ar/39Ar ages on intercalated silicic tuffs provide precise ages for Steens Basalt lavas: implications for flood basalt effusion rates, relation to Miocene Climatic Optimum, and the age of the Steens Geomagnetic Reversal. GSA Rocky Mountain Section Meeting, Moscow, Idaho, May.
Muntean, J.L., Davis, D.A., and Shevenell, L. (2016) The Nevada Mineral Industry 2014. Nevada Bureau of Mines and Geology Special Publication MI-2014, 173 pp.
United States Geological Survey (2016) Minerals Yearbook, mercury, Mineral Industry Surveys, Annual Reviews for Minerals Yearbook, 2014, U.S. Government Printing Office, Reston, VA.
Benson, T.R. (2017) Geology, 40Ar/39Ar geochronology, and lithium enrichment of the mid-Miocene McDermitt Volcanic Field (Nevada and Oregon, United States). Ph.D. Thesis, Stanford University, 239 pp.
Benson, T.R., Coble, M.A., Rytuba, J.J., and Mahood, G.A. (2017) Lithium enrichment in rhyolite magmas of intracontinental calderas leads to Li deposits in caldera basins. Nature Communications, 8, article 270, 1-9.
Benson, T.R., Mahood, G.A., and Grove, M.J. (2017) Geology and 40Ar/39Ar geochronology of the middle Miocene McDermitt volcanic field, Oregon and Nevada: Silicic volcanism associated with propagating flood basalt dikes at initiation of the Yellowstone hotspot. Geological Society of America Bulletin. https://doi.org/10.1130/B31642.1
Coyan, J.A., Zientek, M.L., and Mihalasky, M. J. (2017) Spatiotemporal Analysis of Changes in Lode Mining Claims Around the McDermitt Caldera, Northern Nevada and Southern Oregon. Natural Resources Research, 26(3, July), 319-337.
Mahood, G.A. and Benson, T.R. (2017) Using 40Ar/39Ar ages of intercalated silicic tuffs to date flood basalts: Precise ages for Steens Basalt Member of the Columbia River Basalt Group. Earth and Planetary Science Letters, 459, 340-351.
Henry, C.D., Castor, S.B, Starkel, W.B., Ellis, B.S., Wolff, J.A., Lavarie, J.A., McIntosh, W.C., and Heizler, M.T. (2017) Geology and evolution of the McDermitt caldera, northern Nevada and southeastern Oregon, western USA. Geosphere, 13(4, July), 1066-1112.
Fourie, L. and Peldiak, D. (2018) Independent Technical Report for the Thacker Pass Project, Humboldt County, Nevada, USA (prepared for Lithium Nevada Corp., a wholly owned subsidiary of Lithium Americas Corp. (“LAC”) by Advisian Americas (“Advisian”), a division of the WorleyParsons Group, February 15, 2018, 95 pp.).
Ehansi, E., Fourie, L., Hutson, A., Peldiak, D., Spiering, R., Young, J., and Armstrong, K. (2018) Technical Report on the PreFeasibility Study for the Thacker Pass Project, Humboldt County, Nevada, USA (prepared for Lithium Nevada Corp., a wholly owned subsidiary of Lithium Americas Corp. (“LAC”) by Advisian Americas (“Advisian”), a division of the WorleyParsons Group, August 1, 2018, 266 pp.).
Placer Amex, Inc., McDermitt Mine (Date Ukn.), a corporate brochure, 8 pp.

External Links



This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2018, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: November 13, 2018 22:17:28 Page generated: November 13, 2018 06:48:03
Go to top of page