Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Mallardite

A valid IMA mineral species - grandfathered
This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About MallarditeHide

00436250016796051277496.jpg
François Ernest Mallard
Formula:
MnSO4 · 7H2O
Colour:
Light rose pink; colourless in transmitted light.
Lustre:
Vitreous
Hardness:
2
Specific Gravity:
1.846
Crystal System:
Monoclinic
Name:
Named in 1879 A. Carnot in honor of François Ernest Mallard [4 February 1833, Châteauneuf-sur-Cher, France - 6 July 1894, Paris, France], French crystallographer. Mallard was trained both as a mining engineer and as a mineralogist. In 1859, he was professor at the School of Mines (Saint Etienne) and, in 1872, professor at the School of Mines in Paris. Mallard made many contributions. Particularly, he solved important problems relating to minerals that had anomalous optical properties and discovered that minerals with low symmetry could appear to have higher symmetry due to stacking of small low-symmetry domains. This discovery led to solutions to the problems relating to pseudo-symmetry and optical effects relating to crystal clusters. Mallard wrote the important two volume, Traité de Cristallographie, in 1879 and 1884. Because of his practical nature as an engineer, Mallard's work with Henry Le Chatelier solved issues relating to gas explosions in mines. Mallard was also a field mapping geologist.
Melanterite Group.

Water-soluble; quickly dehydrates at room temperature.


Unique IdentifiersHide

Mindat ID:
2555
Long-form identifier:
mindat:1:1:2555:9
GUID
(UUID V4):
382ce99a-ceb1-48f6-8c5f-2aba4514a12d

Classification of MallarditeHide

Approved, 'Grandfathered' (first described prior to 1959)
First published:
1879
7.CB.35

7 : SULFATES (selenates, tellurates, chromates, molybdates, wolframates)
C : Sulfates (selenates, etc.) without additional anions, with H2O
B : With only medium-sized cations
29.6.10.5

29 : HYDRATED ACID AND NORMAL SULFATES
6 : AXO4·xH2O
25.9.3

25 : Sulphates
9 : Sulphates of Mn

Mineral SymbolsHide

As of 2021 there are now IMA–CNMNC approved mineral symbols (abbreviations) for each mineral species, useful for tables and diagrams.

SymbolSourceReference
MalIMA–CNMNCWarr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43

Physical Properties of MallarditeHide

Vitreous
Transparency:
Transparent, Translucent
Colour:
Light rose pink; colourless in transmitted light.
Streak:
White
Hardness:
Cleavage:
Distinct/Good
On {001} good; possibly also on {110}.
Density:
1.846 g/cm3 (Measured)    1.838 g/cm3 (Calculated)
Comment:
Density measured on artificial material.

Optical Data of MallarditeHide

Type:
Biaxial (+)
RI values:
nα = 1.462 nβ = 1.465 nγ = 1.474
Max Birefringence:
δ = 0.012
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
Moderate
Dispersion:
r > v strong
Optical Extinction:
Y = b; Z ∧ c = 43°–44°.

Chemical Properties of MallarditeHide

Formula:
MnSO4 · 7H2O
IMA Formula:
Mn(SO4) · 7H2O

Crystallography of MallarditeHide

Crystal System:
Monoclinic
Class (H-M):
2/m - Prismatic
Space Group:
P2/m
Cell Parameters:
a = 14.15 Å, b = 6.5 Å, c = 11.06 Å
β = 105.6°
Ratio:
a:b:c = 2.177 : 1 : 1.702
Unit Cell V:
979.77 ų (Calculated from Unit Cell)
Z:
4
Morphology:
Artificial crystals are tabular {001}. Fibrous masses and crusts.

X-Ray Powder DiffractionHide

Powder Diffraction Data:
d-spacingIntensity
4.92 Å(100)
5.49 Å(72)
4.88 Å(54)
3.79 Å(42)
2.758 Å(38)
3.26 Å(36)
3.13 Å(31)
Comments:
Jokoku mine, Japan.

Geological EnvironmentHide

Paragenetic Mode(s):
Paragenetic ModeEarliest Age (Ga)
Stage 7: Great Oxidation Event<2.4
47b : [Sulfates and sulfites]
47e : [Vanadates, chromates, manganates]
47h : [Near-surface oxidized, dehydrated minerals]
Stage 10b: Anthropogenic minerals<10 Ka
55 : Anthropogenic mine minerals
Geological Setting:
Oxidation of iron/manganese sulfides and carbonates in water saturated environments.

Type Occurrence of MallarditeHide

General Appearance of Type Material:
Fibrous.
Place of Conservation of Type Material:
Natural History Museum, Paris, France, number 96132.

Other Language Names for MallarditeHide

German:Mallardit
Spanish:Mallardita

Relationship of Mallardite to other SpeciesHide

Other Members of this group:
Alpersite(Mg,Cu)(SO4) · 7H2OMon. 2/m : P21/b
BieberiteCoSO4 · 7H2OMon. 2/m : P2/m
BoothiteCuSO4 · 7H2OMon. 2/m : P21/b
MelanteriteFe2+(H2O)6SO4 · H2OMon. 2/m : P21/b
Zincmelanterite(Zn,Cu,Fe)SO4 · 7H2OMon. 2/m : P21/b

Common AssociatesHide

Associated Minerals Based on Photo Data:
1 photo of Mallardite associated with ChvaleticeiteMn(SO4) · 6H2O

Related Minerals - Strunz-mindat GroupingHide

7.CB.02VoudourisiteCdSO4 · H2OMon. 2/m : P21/m
7.CB.05DwornikiteNi(SO4) · H2OMon. 2/m : B2/b
7.CB.05GunningiteZnSO4 · H2OMon. 2/m : B2/b
7.CB.05KieseriteMgSO4 · H2OMon. 2/m : B2/b
7.CB.05Poitevinite(Cu,Fe)SO4 · H2OTric. 1 : P1
7.CB.05SzmikiteMnSO4 · H2OMon. 2/m : B2/b
7.CB.05SzomolnokiteFeSO4 · H2OMon. 2/m : B2/b
7.CB.05CobaltkieseriteCoSO4 · H2OMon. 2/m : B2/b
7.CB.07SanderiteMgSO4 · 2H2OOrth. 2 2 2 : P21 21 21
7.CB.10BonattiteCuSO4 · 3H2OMon. m : Bb
7.CB.12BelogubiteCuZn(SO4)2 · 10H2OTric. 1 : P1
7.CB.15Aplowite(Co,Mn,Ni)SO4 · 4H2OMon. 2/m
7.CB.15Boyleite(Zn,Mg)SO4 · 4H2OMon. 2/m : P21/b
7.CB.15Ilesite(Mn,Zn,Fe)SO4 · 4H2OMon. 2/m
7.CB.15RozeniteFeSO4 · 4H2OMon. 2/m : P21/b
7.CB.15StarkeyiteMgSO4 · 4H2OMon. 2/m : P21/b
7.CB.15DrobeciteCdSO4 · 4H2OMon. 2/m : P21/m
7.CB.15CranswickiteMgSO4 · 4H2OMon. m : Bb
7.CB.20ChalcanthiteCuSO4 · 5H2OTric. 1 : P1
7.CB.20JôkokuiteMnSO4 · 5H2OTric. 1 : P1
7.CB.20PentahydriteMgSO4 · 5H2OTric. 1 : P1
7.CB.20SiderotilFeSO4 · 5H2OTric.
7.CB.25BianchiteZn(SO4) · 6H2OMon. 2/m : P2/m
7.CB.25ChvaleticeiteMn(SO4) · 6H2OMon. 2/m : B2/b
7.CB.25FerrohexahydriteFeSO4 · 6H2OMon. 2/m : B2/b
7.CB.25HexahydriteMgSO4 · 6H2OMon. 2/m : P2/m
7.CB.25MoorhouseiteCo(SO4) · 6H2OMon. 2/m : B2/b
7.CB.25NickelhexahydriteNi(SO4) · 6H2OMon. 2/m : B2/b
7.CB.30RetgersiteNiSO4 · 6H2OTet. 4 2 2 : P41 21 2
7.CB.35BieberiteCoSO4 · 7H2OMon. 2/m : P2/m
7.CB.35BoothiteCuSO4 · 7H2OMon. 2/m : P21/b
7.CB.35MelanteriteFe2+(H2O)6SO4 · H2OMon. 2/m : P21/b
7.CB.35Zincmelanterite(Zn,Cu,Fe)SO4 · 7H2OMon. 2/m : P21/b
7.CB.35Alpersite(Mg,Cu)(SO4) · 7H2OMon. 2/m : P21/b
7.CB.40EpsomiteMgSO4 · 7H2OOrth. 2 2 2 : P21 21 21
7.CB.40GoslariteZnSO4 · 7H2OOrth. 2 2 2 : P21 21 21
7.CB.40MorenositeNiSO4 · 7H2OOrth. 2 2 2 : P21 21 21
7.CB.45AlunogenAl2(SO4)3 · 17H2OTric. 1 : P1
7.CB.45Meta-alunogenAl2(SO4)3 · 12H2OOrth.
7.CB.50AluminocoquimbiteAl2Fe2(SO4)6(H2O)12 · 6H2OTrig. 3m (3 2/m) : P3 1c
7.CB.50Lazaridisite3CdSO4 · 8H2OMon. 2/m : B2/b
7.CB.52PararaisaiteCuMg[Te6+O4(OH)2] · 6H2OMon. 2/m : P21/b
7.CB.55CoquimbiteAlFe3(SO4)6(H2O)12 · 6H2OTrig. 3m (3 2/m) : P3 1c
7.CB.55ParacoquimbiteFe4(SO4)6(H2O)12 · 6H2OTrig. 3 : R3
7.CB.55Rhomboclase(H5O2)Fe3+(SO4)2 · 2H2OOrth. mmm (2/m 2/m 2/m) : Pnma
7.CB.55RaisaiteCuMg[Te6+O4(OH)2] · 6H2OMon. 2/m : B2/b
7.CB.57CaichengyuniteFe2+3Al2(SO4)6 · 30H2OMon.
7.CB.60KorneliteFe2(SO4)3 · 7H2OMon. 2/m : P21/m
7.CB.65QuenstedtiteFe2(SO4)3 · 11H2OTric. 1 : P1
7.CB.70LauseniteFe2(SO4)3 · 5H2OMon. 2/m : P21/m
7.CB.75LishizheniteZnFe2(SO4)4 · 14H2OTric. 1 : P1
7.CB.75RömeriteFe2+Fe3+2(SO4)4 · 14H2OTric. 1 : P1
7.CB.80RansomiteCuFe2(SO4)4 · 6H2OMon. 2/m : P21/b
7.CB.85ApjohniteMn2+Al2(SO4)4 · 22H2OMon. 2/m : P21/b
7.CB.85BíliniteFe2+Fe3+2(SO4)4 · 22H2OMon. 2/m : P21/b
7.CB.85Dietrichite(Zn,Fe2+,Mn2+)Al2(SO4)4 · 22H2OMon. 2/m : P21/b
7.CB.85HalotrichiteFeAl2(SO4)4 · 22H2OMon. 2 : P2
7.CB.85PickeringiteMgAl2(SO4)4 · 22H2OMon. 2/m : P21/b
7.CB.85Redingtonite(Fe2+,Mg,Ni)(Cr,Al)2(SO4)4 · 22H2OMon. 2
7.CB.85Wupatkiite(Co,Mg,Ni)Al2(SO4)4 · 22H2OMon. 2/m : P21/b
7.CB.90MeridianiiteMgSO4 · 11H2OTric. 1 : P1

Other InformationHide

Thermal Behaviour:
Heated in a closed tube, it gives water in abundance. Gradually calcined, it releases sulfuric acid vapors and leaves a reddish-brown residue.
Notes:
Water-soluble; quickly dehydrates at room temperature.
Special Storage/
Display Requirements:
Quickly dehydrates at room temperature.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Internet Links for MallarditeHide

References for MallarditeHide

Reference List:

Localities for MallarditeHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for references and further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (e.g. from pseudomorphs).

All localities listed without proper references should be considered as questionable.
Australia
 
  • New South Wales
    • Yancowinna Co.
      • Broken Hill district
Czech Republic
 
  • Karlovy Vary Region
    • Karlovy Vary District
  • Pardubice Region
    • Pardubice District
France
 
  • Grand Est
    • Haut-Rhin
      • Colmar-Ribeauvillé
Italy
 
  • Campania
    • Naples
      • Somma-Vesuvius Complex
        • Mount Vesuvius
  • Trentino-Alto Adige (Trentino-South Tyrol)
    • Trento Province (Trentino)
      • Levico Terme
Japan
 
  • Hokkaidō Prefecture
    • Hiyama Subprefecture
      • Hiyama District
        • Kaminokuni
Peru
 
  • Pasco
    • Pasco province
      • Cerro de Pasco
Russia
 
  • Kamchatka Krai
    • Milkovsky District
      • Tolbachik Volcanic field
        • Great Fissure eruption (Main Fracture)
          • Northern Breakthrough (North Breach)
Spain
 
  • Andalusia
    • Huelva
      • Minas de Riotinto
USA
 
  • Colorado
    • Teller County
      • Cripple Creek Mining District
  • New Mexico
    • Grant County
    • Sierra County
  • Utah
    • Salt Lake County
      • Bingham Mining District
 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: May 9, 2024 15:33:20 Page updated: July 12, 2023 05:52:17
Go to top of page