Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Berlín geothermal field, Berlín, Usulután Department, El Salvadori
Regional Level Types
Berlín geothermal fieldGeothermal Field (Active)
BerlínMunicipality
Usulután DepartmentDepartment
El SalvadorCountry

This page is currently not sponsored. Click here to sponsor this page.
PhotosMapsSearch
Latitude & Longitude (WGS84):
13° 31' 30'' North , 88° 30' 32'' West
Latitude & Longitude (decimal):
Locality type:
Geothermal Field (Active) - last checked 2020
Köppen climate type:
Name(s) in local language(s):
Campo geotérmico de Berlín, Departamento de Usulután, El Salvador


The Berlín geothermal field is located 100 km east of San Salvador, on the flanks of the Berlín–Tecapa Quaternary basaltic–andesite stratovolcano, along the southern fault system of the Central American graben.

The Berlín–Tecapa volcanic complex is characterized by basaltic to andesitic lava flows and scoria, and andesitic to dacitic ignimbrites, which were produced during two major eruptions that accompanied the development of the Berlín and Blanca Rosa calderas. The Berlín caldera forms a keyhole-shaped crater that opens toward the north–northwest and encloses the geothermal field. Three distinct aquifers have been identified in the field: a shallow, low-salinity aquifer (1600 ppm NaCl equiv., 200 to 300 m a.s.l.); a moderately saline intermediate aquifer (6600 ppm NaCl equiv., near sea level) with temperatures of 150 to 200°C and a thickness of 500 to 700 m; and a deep (8000 to 12000 ppm NaCl equiv.,800 to 1200 m b.s.l.), saline aquifer with a pH of ~5 and a temperature of ~290°C, that is exploited for geothermal energy and is responsible for scaling in wells and pipelines. The reservoir is hosted by basaltic–andesite and andesite lavas interbedded with minor tuff layers; these rocks have undergone propylitic alteration, characterized by abundant quartz and epidote, moderate chlorite and sericite, and minor calcite and wairakite.

Composite samples, consisting of mixed scale, rock, and corroded pipe fragments, were obtained from solid collectors and drains attached to liquid-vapor and re-injection lines of wells, the water tank, and vapor lines during a maintenance operation in February 2000. The fragments constitute mixtures of material that originated in surface pipelines, at depth in the wells, and/or in the reservoir. The fragments were detached and transported by geothermal fluids to the solid collectors and drains, where they were cemented by amorphous silica.

Composite fragments consist mainly of sulphide- and electrum-bearing aluminium-rich amorphous silica scale, sulphide- and electrum-bearing saponitic/vermiculitic clay from the reservoir, and altered metallic pipe linings containing As–S-bearing iron oxide–oxyhydroxide grains. Siliceous and clay-rich precipitates contain concentrations of gold, silver, copper, lead, zinc, and antimony. Copper, lead, and zinc occur mainly as chalcopyrite, galena, and sphalerite, respectively, in amorphous silica and clay; near the surface, chalcopyrite transported from depth alters to bornite. Gold and silver occur mainly as electrum, which deposited with base metal sulphides in the clay precipitates, and amorphous silica at higher levels in the well. Electrum precipitates in the wells due to the rapid drop in temperature and loss of H2S associated with boiling (Raymond et al., 2005).

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Mineral List


33 valid minerals.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Acanthite
Formula: Ag2S
Reference: Raymond, J., Williams-Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145(1), 81-96.
Actinolite
Formula: ◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Albite
Formula: Na(AlSi3O8)
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Alunite
Formula: KAl3(SO4)2(OH)6
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Anhydrite
Formula: CaSO4
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Bornite
Formula: Cu5FeS4
Reference: Raymond, J., Williams-Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145(1), 81-96.
Calcite
Formula: CaCO3
Reference: Raymond, J., Williams-Jones, A. E., Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145 (1), 81-96.
Chalcopyrite
Formula: CuFeS2
Reference: Raymond, J., Williams-Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145(1), 81-96.
'Chlorite Group'
Reference: Raymond, J., Williams-Jones, A. E., Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145 (1), 81-96.
Clinochlore
Formula: Mg5Al(AlSi3O10)(OH)8
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Clinochlore var. Pennine
Formula: Mg5Al(AlSi3O10)(OH)8
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Covellite
Formula: CuS
Reference: Raymond, J., Williams-Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145(1), 81-96.
Cristobalite
Formula: SiO2
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Epidote
Formula: {Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Reference: Raymond, J., Williams-Jones, A. E., Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145 (1), 81-96.
'Feldspar Group'
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Galena
Formula: PbS
Reference: Raymond, J., Williams-Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145(1), 81-96.
Geffroyite ?
Formula: (Cu,Fe,Ag)9(Se,S)8
Reference: Raymond, J., Williams-Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145(1), 81-96.
Gold
Formula: Au
Reference: Raymond, J., Williams-Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145(1), 81-96.
Gold var. Electrum
Formula: (Au,Ag)
Reference: Raymond, J., Williams-Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145(1), 81-96.
Halloysite
Formula: Al2(Si2O5)(OH)4
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Hematite
Formula: Fe2O3
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
'Heulandite'
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
'Iddingsite'
Formula: MgO · Fe2O3 · 3SiO2 · 4H2O
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Laumontite
Formula: CaAl2Si4O12 · 4H2O
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
'Leucoxene'
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Montmorillonite
Formula: (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Raymond, J., Williams-Jones, A. E., Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145 (1), 81-96.
Muscovite var. Illite
Formula: K0.65Al2.0[Al0.65Si3.35O10](OH)2
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Muscovite var. Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Raymond, J., Williams-Jones, A. E., Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145 (1), 81-96.
Natroalunite
Formula: NaAl3(SO4)2(OH)6
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Nontronite
Formula: Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
'Plagioclase'
Formula: (Na,Ca)[(Si,Al)AlSi2]O8
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Prehnite
Formula: Ca2Al2Si3O10(OH)2
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Pyrite
Formula: FeS2
Reference: Raymond, J., Williams-Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145(1), 81-96.
'Pyroxene Group'
Formula: ADSi2O6
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Pyrrhotite
Formula: Fe1-xS
Reference: Raymond, J., Williams-Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145(1), 81-96.
Quartz
Formula: SiO2
Reference: Raymond, J., Williams-Jones, A. E., Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145 (1), 81-96.
Quartz var. Chalcedony
Formula: SiO2
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Saponite
Formula: Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Reference: Raymond, J., Williams-Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145(1), 81-96.
'Smectite Group'
Formula: A0.3D2-3[T4O10]Z2 · nH2O
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Sphalerite
Formula: ZnS
Reference: Raymond, J., Williams-Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145(1), 81-96.
'Tetrahedrite Subgroup'
Formula: Cu6(Cu4C2+2)Sb4S12S
Reference: Raymond, J., Williams-Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145(1), 81-96.
Titanite
Formula: CaTi(SiO4)O
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Tridymite
Formula: SiO2
Reference: Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.
Vermiculite
Formula: Mg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Reference: Raymond, J., Williams-Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145(1), 81-96.
Wairakite
Formula: Ca(Al2Si4O12) · 2H2O
Reference: Raymond, J., Williams-Jones, A. E., Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of volcanology and geothermal research, 145 (1), 81-96.

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Gold1.AA.05Au
var. Electrum1.AA.05(Au,Ag)
Group 2 - Sulphides and Sulfosalts
Acanthite2.BA.35Ag2S
Bornite2.BA.15Cu5FeS4
Chalcopyrite2.CB.10aCuFeS2
Covellite2.CA.05aCuS
Galena2.CD.10PbS
Geffroyite ?2.BB.15(Cu,Fe,Ag)9(Se,S)8
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe1-xS
Sphalerite2.CB.05aZnS
'Tetrahedrite Subgroup'2.GB.05Cu6(Cu4C2+2)Sb4S12S
Group 4 - Oxides and Hydroxides
Cristobalite4.DA.15SiO2
Hematite4.CB.05Fe2O3
Quartz4.DA.05SiO2
var. Chalcedony4.DA.05SiO2
Tridymite4.DA.10SiO2
Group 5 - Nitrates and Carbonates
Calcite5.AB.05CaCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Alunite7.BC.10KAl3(SO4)2(OH)6
Anhydrite7.AD.30CaSO4
Natroalunite7.BC.10NaAl3(SO4)2(OH)6
Group 9 - Silicates
Actinolite9.DE.10◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Albite9.FA.35Na(AlSi3O8)
Clinochlore9.EC.55Mg5Al(AlSi3O10)(OH)8
var. Pennine9.EC.55Mg5Al(AlSi3O10)(OH)8
Epidote9.BG.05a{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Halloysite9.ED.10Al2(Si2O5)(OH)4
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Laumontite9.GB.10CaAl2Si4O12 · 4H2O
Montmorillonite9.EC.40(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var. Illite9.EC.15K0.65Al2.0[Al0.65Si3.35O10](OH)2
var. Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Nontronite9.EC.40Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Prehnite9.DP.20Ca2Al2Si3O10(OH)2
Saponite9.EC.45Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Titanite9.AG.15CaTi(SiO4)O
Vermiculite9.EC.50Mg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Wairakite9.GB.05Ca(Al2Si4O12) · 2H2O
Unclassified Minerals, Rocks, etc.
'Chlorite Group'-
'Feldspar Group'-
'Heulandite'-
'Iddingsite'-MgO · Fe2O3 · 3SiO2 · 4H2O
'Leucoxene'-
'Plagioclase'-(Na,Ca)[(Si,Al)AlSi2]O8
'Pyroxene Group'-ADSi2O6
'Smectite Group'-A0.3D2-3[T4O10]Z2 · nH2O

List of minerals for each chemical element

HHydrogen
H SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
H VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
H Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
H Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
H WairakiteCa(Al2Si4O12) · 2H2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
H PrehniteCa2Al2Si3O10(OH)2
H Clinochlore var. PennineMg5Al(AlSi3O10)(OH)8
H ClinochloreMg5Al(AlSi3O10)(OH)8
H Muscovite var. IlliteK0.65Al2.0[Al0.65Si3.35O10](OH)2
H Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
H Smectite GroupA0.3D2-3[T4O10]Z2 · nH2O
H NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
H LaumontiteCaAl2Si4O12 · 4H2O
H IddingsiteMgO · Fe2O3 · 3SiO2 · 4H2O
H KaoliniteAl2(Si2O5)(OH)4
H HalloysiteAl2(Si2O5)(OH)4
H AluniteKAl3(SO4)2(OH)6
H NatroaluniteNaAl3(SO4)2(OH)6
CCarbon
C CalciteCaCO3
OOxygen
O SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
O VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
O Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
O QuartzSiO2
O Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
O CalciteCaCO3
O WairakiteCa(Al2Si4O12) · 2H2O
O MuscoviteKAl2(AlSi3O10)(OH)2
O Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
O PrehniteCa2Al2Si3O10(OH)2
O Quartz var. ChalcedonySiO2
O Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
O AlbiteNa(AlSi3O8)
O Clinochlore var. PennineMg5Al(AlSi3O10)(OH)8
O ClinochloreMg5Al(AlSi3O10)(OH)8
O TitaniteCaTi(SiO4)O
O Muscovite var. IlliteK0.65Al2.0[Al0.65Si3.35O10](OH)2
O Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
O AnhydriteCaSO4
O Smectite GroupA0.3D2-3[T4O10]Z2 · nH2O
O NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
O CristobaliteSiO2
O TridymiteSiO2
O LaumontiteCaAl2Si4O12 · 4H2O
O IddingsiteMgO · Fe2O3 · 3SiO2 · 4H2O
O HematiteFe2O3
O KaoliniteAl2(Si2O5)(OH)4
O HalloysiteAl2(Si2O5)(OH)4
O AluniteKAl3(SO4)2(OH)6
O NatroaluniteNaAl3(SO4)2(OH)6
O Pyroxene GroupADSi2O6
NaSodium
Na Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Na AlbiteNa(AlSi3O8)
Na Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Na NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Na NatroaluniteNaAl3(SO4)2(OH)6
MgMagnesium
Mg SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Mg VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Mg Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Mg Clinochlore var. PennineMg5Al(AlSi3O10)(OH)8
Mg ClinochloreMg5Al(AlSi3O10)(OH)8
Mg Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Mg IddingsiteMgO · Fe2O3 · 3SiO2 · 4H2O
AlAluminium
Al SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Al VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Al Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Al Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
Al WairakiteCa(Al2Si4O12) · 2H2O
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al PrehniteCa2Al2Si3O10(OH)2
Al Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Al AlbiteNa(AlSi3O8)
Al Clinochlore var. PennineMg5Al(AlSi3O10)(OH)8
Al ClinochloreMg5Al(AlSi3O10)(OH)8
Al Muscovite var. IlliteK0.65Al2.0[Al0.65Si3.35O10](OH)2
Al Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Al NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Al LaumontiteCaAl2Si4O12 · 4H2O
Al KaoliniteAl2(Si2O5)(OH)4
Al HalloysiteAl2(Si2O5)(OH)4
Al AluniteKAl3(SO4)2(OH)6
Al NatroaluniteNaAl3(SO4)2(OH)6
SiSilicon
Si SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Si VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Si Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Si QuartzSiO2
Si Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
Si WairakiteCa(Al2Si4O12) · 2H2O
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Si PrehniteCa2Al2Si3O10(OH)2
Si Quartz var. ChalcedonySiO2
Si Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Si AlbiteNa(AlSi3O8)
Si Clinochlore var. PennineMg5Al(AlSi3O10)(OH)8
Si ClinochloreMg5Al(AlSi3O10)(OH)8
Si TitaniteCaTi(SiO4)O
Si Muscovite var. IlliteK0.65Al2.0[Al0.65Si3.35O10](OH)2
Si Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Si NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Si CristobaliteSiO2
Si TridymiteSiO2
Si LaumontiteCaAl2Si4O12 · 4H2O
Si IddingsiteMgO · Fe2O3 · 3SiO2 · 4H2O
Si KaoliniteAl2(Si2O5)(OH)4
Si HalloysiteAl2(Si2O5)(OH)4
Si Pyroxene GroupADSi2O6
SSulfur
S ChalcopyriteCuFeS2
S Tetrahedrite SubgroupCu6(Cu4C22+)Sb4S12S
S SphaleriteZnS
S AcanthiteAg2S
S BorniteCu5FeS4
S GalenaPbS
S CovelliteCuS
S PyriteFeS2
S PyrrhotiteFe1-xS
S AnhydriteCaSO4
S AluniteKAl3(SO4)2(OH)6
S NatroaluniteNaAl3(SO4)2(OH)6
S Geffroyite(Cu,Fe,Ag)9(Se,S)8
KPotassium
K Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
K MuscoviteKAl2(AlSi3O10)(OH)2
K Muscovite var. IlliteK0.65Al2.0[Al0.65Si3.35O10](OH)2
K AluniteKAl3(SO4)2(OH)6
CaCalcium
Ca SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Ca Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Ca CalciteCaCO3
Ca WairakiteCa(Al2Si4O12) · 2H2O
Ca Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Ca PrehniteCa2Al2Si3O10(OH)2
Ca Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Ca TitaniteCaTi(SiO4)O
Ca Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Ca AnhydriteCaSO4
Ca LaumontiteCaAl2Si4O12 · 4H2O
TiTitanium
Ti TitaniteCaTi(SiO4)O
FeIron
Fe ChalcopyriteCuFeS2
Fe BorniteCu5FeS4
Fe SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Fe VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Fe PyriteFeS2
Fe PyrrhotiteFe1-xS
Fe Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Fe Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Fe NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Fe IddingsiteMgO · Fe2O3 · 3SiO2 · 4H2O
Fe HematiteFe2O3
Fe Geffroyite(Cu,Fe,Ag)9(Se,S)8
CuCopper
Cu ChalcopyriteCuFeS2
Cu Tetrahedrite SubgroupCu6(Cu4C22+)Sb4S12S
Cu BorniteCu5FeS4
Cu CovelliteCuS
Cu Geffroyite(Cu,Fe,Ag)9(Se,S)8
ZnZinc
Zn SphaleriteZnS
SeSelenium
Se Geffroyite(Cu,Fe,Ag)9(Se,S)8
AgSilver
Ag AcanthiteAg2S
Ag Gold var. Electrum(Au,Ag)
Ag Geffroyite(Cu,Fe,Ag)9(Se,S)8
SbAntimony
Sb Tetrahedrite SubgroupCu6(Cu4C22+)Sb4S12S
AuGold
Au Gold var. Electrum(Au,Ag)
Au GoldAu
PbLead
Pb GalenaPbS

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Raymond, J., Williams-Jones, A. E., Clark, J. R. (2005) Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador; implications for metal transport in natural systems. Journal of Volcanology and Geothermal Research: 145(1): 81-96.
Torio-Henríquez, E. (2007) Petrography and mineral alteration in Berlin geothermal field. Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California, January 22-24.

External Links


Other Regions, Features and Areas containing this locality


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: May 9, 2024 19:44:26 Page updated: January 14, 2023 08:13:46
Go to top of page