Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Les Ferreres mine, Rocabruna, Camprodon, Girona, Catalonia, Spaini
Regional Level Types
Les Ferreres mineMine (Abandoned)
RocabrunaVillage
Camprodon- not defined -
GironaProvince
CataloniaAutonomous Community
SpainGroup of Countries

This page is currently not sponsored. Click here to sponsor this page.
PhotosMapsSearch
Latitude & Longitude (WGS84):
42° 21' 24'' North , 2° 27' 51'' East
Latitude & Longitude (decimal):
Type:
Mine (Abandoned) - last checked 2023
Köppen climate type:
Nearest Settlements:
PlacePopulationDistance
Molló350 (2010)5.0km
Prats de Molló1,191 (2016)5.4km
Freixenet122 (2010)8.4km
Serrallonga266 (2016)8.8km
Camprodon2,435 (2012)9.5km
Mindat Locality ID:
49198
Long-form identifier:
mindat:1:2:49198:6
GUID (UUID V4):
869ee43a-8f48-41f8-b0f0-817af594744c
Name(s) in local language(s):
Mina de les Ferreres, Rocabruna, Camprodon, El Ripollès, Girona, Catalunya


Filling of karstic cavities in Cambrian-Ordovician dolomites with baryte, quartz and Cu-Pb-Zn-Ag sulfides.
The mineralization is located under an erosive surface covered by red beds of Garumnian facies (Late Cretaceous to Paleocene) that also contain baryte disseminations. It consists of metric-size lenticular lenses and irregular bodies within carbonates.
The deposit is cited in documents from 1225, but mining workings developed from the middle 18th century until the 1960s, when the mine was abandoned.


GEOLOGY

The mineralization of the Ferreres mine is located in a geological region (mantle of Cadí) defined by:
1) Paleozoic series (Cambrian and Ordovician) which were deformed, with folds and thrusts for the Hercynian orogenesis.
2) Granitic intrusions from the late Paleozoic.
3) Mesocenozoic sedimentary materials (Cretaceous – Paleocene), a period in which the whole was affected by the Alpine orogenesis that built the present structure of strata, folds, faults, and thrusts.

The material where the mineralization occurs consists of Ordovician dolomite affected by the Hercynian orogenesis (Upper Paleozoic), in discordant contact with sedimentary Garumnian materials (Upper Cretaceous-Paleocene), which are located around and above the dolomite masses. According to some 1980s studies (Soler, 1983; Soler and Ayora, 1985), the accumulation of materials of the mineralization (essentially baryte and sulphides) was made by filling existing cavities, of karstic origin, inside the dolomite.

But according to subsequent studies (Corbella et al., 2007), the formation of cavities and its filling, takes place more or less at the same time (hydrothermal karst) by geochemical processes of dissolution and precipitation of sulphur-bearing acid-rich hydrous fluids, on the one hand, and in barium and metals (Cu, Zn, Sb,…) from Paleozoic materials from the other hand. These fluids, produced by a continuous process, cause the dissolution of the dolomite, with the formation of cavities and, at the same time or just immediately after, the precipitation of sulphides in the area of contact with the dolomite and the baryte filling of the whole cavity.

The dissolution of the dolomite expresses itself with the formation of cavities, but also with alteration phenomena in areas where there is contact with sulphides. At the bottom of the cavities there are some fragments of dolomite, sometimes surrounded by baryte, presenting different stratification directions and are partially coated and altered by sulphides. This proves that the dolomite was dissolving and collapsing at the same time that sulphides and baryte precipitated into the cavity (Corbella et al., 2007).

09135230014947913806182.jpg
Mineralized bodies
02762140014947913773861.jpg
Gypsum on mine walls
09135230014947913806182.jpg
Mineralized bodies
04302140014949701573629.jpg
Gypsum on mine walls
05958450014973749099391.jpg
Mineralized bodies
02762140014947913773861.jpg
Gypsum on mine walls

The result of all processes are isolated baryte fillings or, more commonly, joined among themselves by fissures, filled in the dolomite and generally developed following the stratification and the diaclasis. The size of these fillings is highly variable (between centimetre-sized to metre-sized) and are formed by the accumulation of spatic aggregates, often with large crystals grown radially from the base of the cavity. In the area of contact of barytes fillings and dolomite, we can find masses of sulphides, with thicknesses varying between millimetre to centimetre sized. These masses of sulphides appear to be more important in the lower parts of the cavities.

Therefore, what we can find on the walls of the galleries are not true baryte and sulphide veins, but the visible part of the baryte fillings, surrounded by the layer of sulphides (largely altered), and the whole fitting within the dolomites, usually very compact. Alteration of sulphides has resulted in the formation of many secondary minerals, which are the main object of the present study. These secondary minerals fill fissures and small geodes within the sulphide layer and on the edges of the contact of this layer with baryte or dolomite.

In addition, there are some sections of the lower levels where there is no dolomite outcrop, but masses of grey schists, which are altered and fragmented. These masses of schists typically appear below the layer of dolomite, which can be clearly seen in some galleries (schist on the walls and dolomite on the ceiling).

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Mineral List


61 valid minerals.

Detailed Mineral List:

Adamite
Formula: Zn2(AsO4)(OH)
Adamite var. Copper-bearing Adamite
Formula: (Zn,Cu)2AsO4OH
References:
Anglesite
Formula: PbSO4
Aragonite
Formula: CaCO3
References:
Arsenopyrite
Formula: FeAsS
Asbolane
Formula: (Ni,Co)2-xMn4+(O,OH)4 · nH2O
References:
Azurite
Formula: Cu3(CO3)2(OH)2
Bariopharmacosiderite
Formula: Ba0.5Fe3+4(AsO4)3(OH)4 · 5H2O
Baryte
Formula: BaSO4
Bayldonite
Formula: PbCu3(AsO4)2(OH)2
Boulangerite
Formula: Pb5Sb4S11
Bournonite
Formula: PbCuSbS3
Brochantite
Formula: Cu4(SO4)(OH)6
References:
Calcite
Formula: CaCO3
Cerussite
Formula: PbCO3
References:
Chalcanthite
Formula: CuSO4 · 5H2O
References:
Chalcocite
Formula: Cu2S
Chalcopyrite
Formula: CuFeS2
Claraite
Formula: (Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14 · 7H2O
Habit: Tabular pseudohexagonal crystals. Crusts.
Colour: Blue
Description: It is one of the most interesting species of the site and the first find in Catalonia. In the rest of the Iberian Peninsula it has only been found in the "La Amorosa" mine, Villahermosa del Río, Castellon (Cócera et al., 2010). The type locality is the “Clara” mine in Oberwolfach (Baden-Würtenberg , Germany) and characterized as hydrated copper and zinc hydroxylcarbonate (Walenta and Dunn, 1982). The structure has not yet been solved and only crystallographic constants are known (Walenta, 1999). According to Kolitsch, in an still unpublished study, the original formula is incorrect and should be amended, stating at least the arsenate anion (AsO4)-3 as arsenic appears to be almost always present. In addition, it is relatively common the presence of sulphur as sulfate anion (SO4)-2. It appears as rosettes, divergent groups and spherulitic aggregates up to 1 mm, which can form druses up to a few squared centimeters, and also in more or less crystalline crusts. Color is intense sky blue in rosettes and crystal groups, and pale sky blue to bluish white in crusts. Individual crystals have tabular habit, often with hexagonal outline (claraite is triclinic pseudohexagonal) and are up to 0.4 mm. It appears on dolomia matrix or filling fissures of baryte or dolomite, close to chalcopyrite and altered fahlore. It is often found associated to theisite, azurite (this mineral sometimes grows on claraite), aragonite and tyrolite. Claraite from the Les Ferreras mine has been analyzed by SEM-EDS and confirmed by XRD. There is arsenic in all samples characterized, and in some of them there is also a low sulfur content, such as with claraite from Villahermosa del Río and from the Brixlegg-Schwaz (Tyrol, Austria) a mining area studied by Schnorrer (1994), Kolitsch (2007-2010) and Hepp & Hajek (2008). Our results reinforce the idea that the formula should be modified, stating at least the arsenate anion. Perhaps the formula should be written as that of tyrolite, presented later. In the case of claraite from Rocabruna, the average relationship Zn :Cu is approximately 1:4,5. The empirical formula is approximately: Cu,Zn)~10[(OH)~11|(SO4)0-0.5|(AsO4)0.3-1.5|(CO3)2.5-3] +nH2O
Cobaltkoritnigite
Formula: Co(AsO3OH) · H2O
Connellite
Formula: Cu19(SO4)(OH)32Cl4 · 3H2O
Covellite
Formula: CuS
References:
Crednerite
Formula: CuMnO2
References:
Cuprite
Formula: Cu2O
References:
Devilline
Formula: CaCu4(SO4)2(OH)6 · 3H2O
Dolomite
Formula: CaMg(CO3)2
Duftite
Formula: PbCu(AsO4)(OH)
References:
Epsomite
Formula: MgSO4 · 7H2O
References:
Erythrite
Formula: Co3(AsO4)2 · 8H2O
Fehrite
Formula: MgCu4(SO4)2(OH)6 · 6H2O
Description: Some years ago (2012) we identified this species in the Les Ferreres mine (Camprodon) but unfortunatelly we didn't have enough sample to finish detrmination and structural studies. Recently we found some more samples and the characterization was carried out based on the results obtained from the application of various analytical techniques: SEM-EDS, Raman and X-ray diffraction. Les Ferreres mine is the second locality worldwide for the species. Fehrite is a recent new species found in Almeria (Spain). In this Catalan mine, fehrite appears as elongated elongated tabular to fibrous crystals, with a delicate bluish-green tone, and fibrous terminations. Usually, it is accompanied by devilline (blue) and brochantite (green). It is the magnesium analogue of ktenasite.
Galena
Formula: PbS
Goethite
Formula: α-Fe3+O(OH)
References:
Gypsum
Formula: CaSO4 · 2H2O
Hematite
Formula: Fe2O3
Hemimorphite
Formula: Zn4Si2O7(OH)2 · H2O
References:
Hydrozincite
Formula: Zn5(CO3)2(OH)6
References:
Jarosite
Formula: KFe3+3(SO4)2(OH)6
References:
Langite
Formula: Cu4(SO4)(OH)6 · 2H2O
References:
Leogangite
Formula: Cu10(AsO4)4(SO4)(OH)6 · 8H2O
Linarite
Formula: PbCu(SO4)(OH)2
References:
Malachite
Formula: Cu2(CO3)(OH)2
Marcasite
Formula: FeS2
Mimetite
Formula: Pb5(AsO4)3Cl
References:
Natrojarosite
Formula: NaFe3(SO4)2(OH)6
References:
Olivenite
Formula: Cu2(AsO4)(OH)
References:
Olivenite var. Leucochalcite
Orthoserpierite
Formula: Ca(Cu,Zn)4(SO4)2(OH)6 · 3H2O
References:
Oxyplumboroméite
Formula: Pb2Sb2O6O
References:
Pharmacosiderite
Formula: KFe3+4(AsO4)3(OH)4 · 6-7H2O
References:
Posnjakite
Formula: Cu4(SO4)(OH)6 · H2O
References:
Pyrite
Formula: FeS2
Quartz
Formula: SiO2
Rosasite
Formula: (Cu,Zn)2(CO3)(OH)2
References:
Scorodite
Formula: Fe3+AsO4 · 2H2O
References:
Serpierite
Formula: Ca(Cu,Zn)4(SO4)2(OH)6 · 3H2O
References:
Smithsonite
Formula: ZnCO3
References:
Sphalerite
Formula: ZnS
Stibnite
Formula: Sb2S3
Tangdanite
Formula: Ca2Cu9(AsO4)4(SO4)0.5(OH)9 · 9H2O
References:
Xavi Ortiz CollectionIdentified by Xavi Ortiz: XRD, SEM-EDS, Raman Spectroscopy
'Tennantite Subgroup'
Formula: Cu6(Cu4C2+2)As4S12S
'Tetrahedrite Subgroup'
Formula: Cu6(Cu4C2+2)Sb4S12S
Tetrahedrite-(Zn)
Formula: Cu6(Cu4Zn2)Sb4S12S
References:
Theisite
Formula: Cu5Zn5(AsO4,SbO4)2(OH)14
Tyrolite
Formula: Ca2Cu9(AsO4)4(CO3)(OH)8 · 11H2O
Zincolivenite
Formula: CuZn(AsO4)(OH)

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 2 - Sulphides and Sulfosalts
Chalcocite2.BA.05Cu2S
Covellite2.CA.05aCuS
Sphalerite2.CB.05aZnS
Chalcopyrite2.CB.10aCuFeS2
Galena2.CD.10PbS
Stibnite2.DB.05Sb2S3
Pyrite2.EB.05aFeS2
Marcasite2.EB.10aFeS2
Arsenopyrite2.EB.20FeAsS
Bournonite2.GA.50PbCuSbS3
Tetrahedrite-(Zn)2.GB.05Cu6(Cu4Zn2)Sb4S12S
'Tetrahedrite Subgroup'2.GB.05Cu6(Cu4C2+2)Sb4S12S
'Tennantite Subgroup'2.GB.05Cu6(Cu4C2+2)As4S12S
Boulangerite2.HC.15Pb5Sb4S11
Group 3 - Halides
Connellite3.DA.25Cu19(SO4)(OH)32Cl4 · 3H2O
Group 4 - Oxides and Hydroxides
Goethite4.00.α-Fe3+O(OH)
Cuprite4.AA.10Cu2O
Crednerite4.AB.05CuMnO2
Hematite4.CB.05Fe2O3
Quartz4.DA.05SiO2
Oxyplumboroméite4.DH.Pb2Sb2O6O
Asbolane4.FL.30(Ni,Co)2-xMn4+(O,OH)4 · nH2O
Group 5 - Nitrates and Carbonates
Calcite5.AB.05CaCO3
Smithsonite5.AB.05ZnCO3
Dolomite5.AB.10CaMg(CO3)2
Aragonite5.AB.15CaCO3
Cerussite5.AB.15PbCO3
Azurite5.BA.05Cu3(CO3)2(OH)2
Rosasite5.BA.10(Cu,Zn)2(CO3)(OH)2
Malachite5.BA.10Cu2(CO3)(OH)2
Hydrozincite5.BA.15Zn5(CO3)2(OH)6
Claraite5.DA.30(Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14 · 7H2O
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Anglesite7.AD.35PbSO4
Baryte7.AD.35BaSO4
Brochantite7.BB.25Cu4(SO4)(OH)6
Jarosite7.BC.10KFe3+3(SO4)2(OH)6
Natrojarosite7.BC.10NaFe3(SO4)2(OH)6
Linarite7.BC.65PbCu(SO4)(OH)2
Chalcanthite7.CB.20CuSO4 · 5H2O
Epsomite7.CB.40MgSO4 · 7H2O
Gypsum7.CD.40CaSO4 · 2H2O
Posnjakite7.DD.10Cu4(SO4)(OH)6 · H2O
Fehrite7.DD.10MgCu4(SO4)2(OH)6 · 6H2O
Langite7.DD.10Cu4(SO4)(OH)6 · 2H2O
Orthoserpierite7.DD.30Ca(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Serpierite7.DD.30Ca(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Devilline7.DD.30CaCu4(SO4)2(OH)6 · 3H2O
Group 8 - Phosphates, Arsenates and Vanadates
Zincolivenite8.BB.30CuZn(AsO4)(OH)
Olivenite
var. Leucochalcite
8.BB.30Cu2(AsO4)(OH)
Adamite
var. Copper-bearing Adamite
8.BB.30(Zn,Cu)2AsO4OH
8.BB.30Zn2(AsO4)(OH)
Olivenite8.BB.30Cu2(AsO4)(OH)
Theisite8.BE.75Cu5Zn5(AsO4,SbO4)2(OH)14
Duftite8.BH.35PbCu(AsO4)(OH)
Bayldonite8.BH.45PbCu3(AsO4)2(OH)2
Mimetite8.BN.05Pb5(AsO4)3Cl
Cobaltkoritnigite8.CB.20Co(AsO3OH) · H2O
Leogangite8.CC.15Cu10(AsO4)4(SO4)(OH)6 · 8H2O
Scorodite8.CD.10Fe3+AsO4 · 2H2O
Erythrite8.CE.40Co3(AsO4)2 · 8H2O
Pharmacosiderite8.DK.10KFe3+4(AsO4)3(OH)4 · 6-7H2O
Bariopharmacosiderite8.DK.10Ba0.5Fe3+4(AsO4)3(OH)4 · 5H2O
Tyrolite8.DM.10Ca2Cu9(AsO4)4(CO3)(OH)8 · 11H2O
Tangdanite8.DM.10Ca2Cu9(AsO4)4(SO4)0.5(OH)9 · 9H2O
Group 9 - Silicates
Hemimorphite9.BD.10Zn4Si2O7(OH)2 · H2O

List of minerals for each chemical element

HHydrogen
H AdamiteZn2(AsO4)(OH)
H Asbolane(Ni,Co)2-xMn4+(O,OH)4 · nH2O
H AzuriteCu3(CO3)2(OH)2
H BariopharmacosideriteBa0.5Fe43+(AsO4)3(OH)4 · 5H2O
H BayldonitePbCu3(AsO4)2(OH)2
H BrochantiteCu4(SO4)(OH)6
H ChalcanthiteCuSO4 · 5H2O
H Claraite(Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14 · 7H2O
H CobaltkoritnigiteCo(AsO3OH) · H2O
H ConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
H Adamite var. Copper-bearing Adamite(Zn,Cu)2AsO4OH
H DevillineCaCu4(SO4)2(OH)6 · 3H2O
H DuftitePbCu(AsO4)(OH)
H EpsomiteMgSO4 · 7H2O
H ErythriteCo3(AsO4)2 · 8H2O
H Goethiteα-Fe3+O(OH)
H GypsumCaSO4 · 2H2O
H HemimorphiteZn4Si2O7(OH)2 · H2O
H HydrozinciteZn5(CO3)2(OH)6
H JarositeKFe33+(SO4)2(OH)6
H LangiteCu4(SO4)(OH)6 · 2H2O
H LinaritePbCu(SO4)(OH)2
H MalachiteCu2(CO3)(OH)2
H NatrojarositeNaFe3(SO4)2(OH)6
H OliveniteCu2(AsO4)(OH)
H OrthoserpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
H PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
H PosnjakiteCu4(SO4)(OH)6 · H2O
H Rosasite(Cu,Zn)2(CO3)(OH)2
H ScoroditeFe3+AsO4 · 2H2O
H SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
H TheisiteCu5Zn5(AsO4,SbO4)2(OH)14
H TyroliteCa2Cu9(AsO4)4(CO3)(OH)8 · 11H2O
H LeogangiteCu10(AsO4)4(SO4)(OH)6 · 8H2O
H ZincoliveniteCuZn(AsO4)(OH)
H TangdaniteCa2Cu9(AsO4)4(SO4)0.5(OH)9 · 9H2O
H FehriteMgCu4(SO4)2(OH)6 · 6H2O
CCarbon
C AragoniteCaCO3
C AzuriteCu3(CO3)2(OH)2
C CalciteCaCO3
C CerussitePbCO3
C Claraite(Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14 · 7H2O
C DolomiteCaMg(CO3)2
C HydrozinciteZn5(CO3)2(OH)6
C MalachiteCu2(CO3)(OH)2
C Rosasite(Cu,Zn)2(CO3)(OH)2
C SmithsoniteZnCO3
C TyroliteCa2Cu9(AsO4)4(CO3)(OH)8 · 11H2O
OOxygen
O AdamiteZn2(AsO4)(OH)
O AnglesitePbSO4
O AragoniteCaCO3
O Asbolane(Ni,Co)2-xMn4+(O,OH)4 · nH2O
O AzuriteCu3(CO3)2(OH)2
O BariopharmacosideriteBa0.5Fe43+(AsO4)3(OH)4 · 5H2O
O BaryteBaSO4
O BayldonitePbCu3(AsO4)2(OH)2
O BrochantiteCu4(SO4)(OH)6
O CalciteCaCO3
O CerussitePbCO3
O ChalcanthiteCuSO4 · 5H2O
O Claraite(Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14 · 7H2O
O CobaltkoritnigiteCo(AsO3OH) · H2O
O ConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
O CredneriteCuMnO2
O CupriteCu2O
O Adamite var. Copper-bearing Adamite(Zn,Cu)2AsO4OH
O DevillineCaCu4(SO4)2(OH)6 · 3H2O
O DolomiteCaMg(CO3)2
O DuftitePbCu(AsO4)(OH)
O EpsomiteMgSO4 · 7H2O
O ErythriteCo3(AsO4)2 · 8H2O
O Goethiteα-Fe3+O(OH)
O GypsumCaSO4 · 2H2O
O HematiteFe2O3
O HemimorphiteZn4Si2O7(OH)2 · H2O
O HydrozinciteZn5(CO3)2(OH)6
O JarositeKFe33+(SO4)2(OH)6
O LangiteCu4(SO4)(OH)6 · 2H2O
O LinaritePbCu(SO4)(OH)2
O MalachiteCu2(CO3)(OH)2
O MimetitePb5(AsO4)3Cl
O NatrojarositeNaFe3(SO4)2(OH)6
O OliveniteCu2(AsO4)(OH)
O OrthoserpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
O PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
O PosnjakiteCu4(SO4)(OH)6 · H2O
O QuartzSiO2
O Rosasite(Cu,Zn)2(CO3)(OH)2
O ScoroditeFe3+AsO4 · 2H2O
O SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
O SmithsoniteZnCO3
O TheisiteCu5Zn5(AsO4,SbO4)2(OH)14
O TyroliteCa2Cu9(AsO4)4(CO3)(OH)8 · 11H2O
O LeogangiteCu10(AsO4)4(SO4)(OH)6 · 8H2O
O ZincoliveniteCuZn(AsO4)(OH)
O TangdaniteCa2Cu9(AsO4)4(SO4)0.5(OH)9 · 9H2O
O OxyplumboroméitePb2Sb2O6O
O FehriteMgCu4(SO4)2(OH)6 · 6H2O
NaSodium
Na NatrojarositeNaFe3(SO4)2(OH)6
MgMagnesium
Mg DolomiteCaMg(CO3)2
Mg EpsomiteMgSO4 · 7H2O
Mg FehriteMgCu4(SO4)2(OH)6 · 6H2O
SiSilicon
Si HemimorphiteZn4Si2O7(OH)2 · H2O
Si QuartzSiO2
SSulfur
S AnglesitePbSO4
S ArsenopyriteFeAsS
S BaryteBaSO4
S BoulangeritePb5Sb4S11
S BournonitePbCuSbS3
S BrochantiteCu4(SO4)(OH)6
S ChalcopyriteCuFeS2
S ChalcanthiteCuSO4 · 5H2O
S ChalcociteCu2S
S Claraite(Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14 · 7H2O
S ConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
S CovelliteCuS
S DevillineCaCu4(SO4)2(OH)6 · 3H2O
S EpsomiteMgSO4 · 7H2O
S GalenaPbS
S GypsumCaSO4 · 2H2O
S JarositeKFe33+(SO4)2(OH)6
S LangiteCu4(SO4)(OH)6 · 2H2O
S LinaritePbCu(SO4)(OH)2
S MarcasiteFeS2
S NatrojarositeNaFe3(SO4)2(OH)6
S OrthoserpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
S PosnjakiteCu4(SO4)(OH)6 · H2O
S PyriteFeS2
S SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
S SphaleriteZnS
S StibniteSb2S3
S Tennantite SubgroupCu6(Cu4C22+)As4S12S
S Tetrahedrite SubgroupCu6(Cu4C22+)Sb4S12S
S LeogangiteCu10(AsO4)4(SO4)(OH)6 · 8H2O
S TangdaniteCa2Cu9(AsO4)4(SO4)0.5(OH)9 · 9H2O
S Tetrahedrite-(Zn)Cu6(Cu4Zn2)Sb4S12S
S FehriteMgCu4(SO4)2(OH)6 · 6H2O
ClChlorine
Cl ConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
Cl MimetitePb5(AsO4)3Cl
KPotassium
K JarositeKFe33+(SO4)2(OH)6
K PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
CaCalcium
Ca AragoniteCaCO3
Ca CalciteCaCO3
Ca DevillineCaCu4(SO4)2(OH)6 · 3H2O
Ca DolomiteCaMg(CO3)2
Ca GypsumCaSO4 · 2H2O
Ca OrthoserpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Ca SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Ca TyroliteCa2Cu9(AsO4)4(CO3)(OH)8 · 11H2O
Ca TangdaniteCa2Cu9(AsO4)4(SO4)0.5(OH)9 · 9H2O
MnManganese
Mn Asbolane(Ni,Co)2-xMn4+(O,OH)4 · nH2O
Mn CredneriteCuMnO2
FeIron
Fe ArsenopyriteFeAsS
Fe BariopharmacosideriteBa0.5Fe43+(AsO4)3(OH)4 · 5H2O
Fe ChalcopyriteCuFeS2
Fe Goethiteα-Fe3+O(OH)
Fe HematiteFe2O3
Fe JarositeKFe33+(SO4)2(OH)6
Fe MarcasiteFeS2
Fe NatrojarositeNaFe3(SO4)2(OH)6
Fe PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
Fe PyriteFeS2
Fe ScoroditeFe3+AsO4 · 2H2O
CoCobalt
Co Asbolane(Ni,Co)2-xMn4+(O,OH)4 · nH2O
Co CobaltkoritnigiteCo(AsO3OH) · H2O
Co ErythriteCo3(AsO4)2 · 8H2O
NiNickel
Ni Asbolane(Ni,Co)2-xMn4+(O,OH)4 · nH2O
CuCopper
Cu AzuriteCu3(CO3)2(OH)2
Cu BayldonitePbCu3(AsO4)2(OH)2
Cu BournonitePbCuSbS3
Cu BrochantiteCu4(SO4)(OH)6
Cu ChalcopyriteCuFeS2
Cu ChalcanthiteCuSO4 · 5H2O
Cu ChalcociteCu2S
Cu Claraite(Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14 · 7H2O
Cu ConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
Cu CovelliteCuS
Cu CredneriteCuMnO2
Cu CupriteCu2O
Cu Adamite var. Copper-bearing Adamite(Zn,Cu)2AsO4OH
Cu DevillineCaCu4(SO4)2(OH)6 · 3H2O
Cu DuftitePbCu(AsO4)(OH)
Cu LangiteCu4(SO4)(OH)6 · 2H2O
Cu LinaritePbCu(SO4)(OH)2
Cu MalachiteCu2(CO3)(OH)2
Cu OliveniteCu2(AsO4)(OH)
Cu OrthoserpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Cu PosnjakiteCu4(SO4)(OH)6 · H2O
Cu Rosasite(Cu,Zn)2(CO3)(OH)2
Cu SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Cu Tennantite SubgroupCu6(Cu4C22+)As4S12S
Cu Tetrahedrite SubgroupCu6(Cu4C22+)Sb4S12S
Cu TheisiteCu5Zn5(AsO4,SbO4)2(OH)14
Cu TyroliteCa2Cu9(AsO4)4(CO3)(OH)8 · 11H2O
Cu LeogangiteCu10(AsO4)4(SO4)(OH)6 · 8H2O
Cu ZincoliveniteCuZn(AsO4)(OH)
Cu TangdaniteCa2Cu9(AsO4)4(SO4)0.5(OH)9 · 9H2O
Cu Tetrahedrite-(Zn)Cu6(Cu4Zn2)Sb4S12S
Cu FehriteMgCu4(SO4)2(OH)6 · 6H2O
ZnZinc
Zn AdamiteZn2(AsO4)(OH)
Zn Claraite(Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14 · 7H2O
Zn Adamite var. Copper-bearing Adamite(Zn,Cu)2AsO4OH
Zn HemimorphiteZn4Si2O7(OH)2 · H2O
Zn HydrozinciteZn5(CO3)2(OH)6
Zn OrthoserpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Zn Rosasite(Cu,Zn)2(CO3)(OH)2
Zn SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Zn SmithsoniteZnCO3
Zn SphaleriteZnS
Zn TheisiteCu5Zn5(AsO4,SbO4)2(OH)14
Zn ZincoliveniteCuZn(AsO4)(OH)
Zn Tetrahedrite-(Zn)Cu6(Cu4Zn2)Sb4S12S
AsArsenic
As AdamiteZn2(AsO4)(OH)
As ArsenopyriteFeAsS
As BariopharmacosideriteBa0.5Fe43+(AsO4)3(OH)4 · 5H2O
As BayldonitePbCu3(AsO4)2(OH)2
As Claraite(Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14 · 7H2O
As CobaltkoritnigiteCo(AsO3OH) · H2O
As Adamite var. Copper-bearing Adamite(Zn,Cu)2AsO4OH
As DuftitePbCu(AsO4)(OH)
As ErythriteCo3(AsO4)2 · 8H2O
As MimetitePb5(AsO4)3Cl
As OliveniteCu2(AsO4)(OH)
As PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
As ScoroditeFe3+AsO4 · 2H2O
As Tennantite SubgroupCu6(Cu4C22+)As4S12S
As TheisiteCu5Zn5(AsO4,SbO4)2(OH)14
As TyroliteCa2Cu9(AsO4)4(CO3)(OH)8 · 11H2O
As LeogangiteCu10(AsO4)4(SO4)(OH)6 · 8H2O
As ZincoliveniteCuZn(AsO4)(OH)
As TangdaniteCa2Cu9(AsO4)4(SO4)0.5(OH)9 · 9H2O
SbAntimony
Sb BoulangeritePb5Sb4S11
Sb BournonitePbCuSbS3
Sb StibniteSb2S3
Sb Tetrahedrite SubgroupCu6(Cu4C22+)Sb4S12S
Sb TheisiteCu5Zn5(AsO4,SbO4)2(OH)14
Sb OxyplumboroméitePb2Sb2O6O
Sb Tetrahedrite-(Zn)Cu6(Cu4Zn2)Sb4S12S
BaBarium
Ba BariopharmacosideriteBa0.5Fe43+(AsO4)3(OH)4 · 5H2O
Ba BaryteBaSO4
PbLead
Pb AnglesitePbSO4
Pb BayldonitePbCu3(AsO4)2(OH)2
Pb BoulangeritePb5Sb4S11
Pb BournonitePbCuSbS3
Pb CerussitePbCO3
Pb DuftitePbCu(AsO4)(OH)
Pb GalenaPbS
Pb LinaritePbCu(SO4)(OH)2
Pb MimetitePb5(AsO4)3Cl
Pb OxyplumboroméitePb2Sb2O6O

Other Regions, Features and Areas containing this locality

Eurasian PlateTectonic Plate
EuropeContinent
Spain

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.

References

 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: April 26, 2024 19:22:21 Page updated: April 20, 2024 20:16:12
Go to top of page