SUPPORT US. If mindat.org is important to you, click here to donate to our Fall 2019 fundraiser!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Les Ferreres mine, Rocabruna, Camprodon, Ripollès, Girona (Gerona), Catalonia, Spaini
Regional Level Types
Les Ferreres mineMine
Rocabruna- not defined -
Camprodon- not defined -
RipollèsCounty
Girona (Gerona)Province
CataloniaAutonomous Community
SpainCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Latitude & Longitude (WGS84):
42° 21' 24'' North , 2° 27' 51'' East
Latitude & Longitude (decimal):
Locality type:
Köppen climate type:
Nearest Settlements:
PlacePopulationDistance
Molló350 (2010)5.0km
Prats de Molló1,191 (2016)5.4km
Freixenet122 (2010)8.4km
Serrallonga266 (2016)8.8km
Camprodon2,435 (2012)9.5km
Name(s) in local language(s):
Mina de les Ferreres, Rocabruna, Camprodon, El Ripollès, Girona, Catalunya


Filling of karstic cavities in Cambrian-Ordovician dolomites with baryte, quartz and Cu-Pb-Zn-Ag sulfides.
The mineralization is located under an erosive surface covered by red beds of Garumnian facies (Late Cretaceous to Paleocene) that also contain baryte disseminations. It consists on metric-size lenticular lenses and irregular bodies within carbonates.
The deposit is cited in documents from 1225, but mining workings developed from middle 18th century until 1960's, when was abandoned.


GEOLOGY

The mineralization of the Ferreres is located on a geological region (mantle of Cadí) defined by:
1) Paleozoic series (Cambrian and Ordovician) which were deformed, with folds and thrusts for the Hercynian orogenesis.
2) Granitic intrusions from the late Paleozoic.
3) Mesocenozoic sedimentary materials (Cretaceous – Paleocene), period in which the whole was affected by the Alpine orogenesis that build the present structure of strata, folds, faults and thrusts.

The material where the mineralization occurs consists of Ordovician dolomite affected by the Hercynian orogenesis (Upper Paleozoic), in discordant contact with sedimentary Garumnian materials (Upper Cretaceous-Paleocene), which are located around and above the dolomite masses. According to some 1980s studies (Soler, 1983; Soler and Ayora, 1985), the accumulation of materials of the mineralization (essentially barytes and sulphides) was made by filling existing cavities, of karstic origin, inside the dolomite.

But according to subsequent studies (Corbella et al., 2007), the formation of cavities and its filling, takes place more or less at the same time (hydrothermal karst) by geochemical processes of dissolution and precipitation of sulphur-bearing acid-rich hydrous fluids, on the one hand, and in barium and metals (Cu, Zn, Sb ...) from Paleozoic materials from the other hand. These fluids, produced by a continuous process, cause the dissolution of the dolomite, with the formation of cavities and, at the same time or just immediately after, the precipitation of sulphides in the area of contact with the dolomite and the baryte filling of the whole cavity.
The dissolution of the dolomite expresses itself with the formation of cavities, but also with alteration phenomena in areas where there is contact with sulphides. At the bottom of the cavities there are some fragments of dolomite, sometimes surrounded by baryte, presenting different stratification directions and are partially coated and altered by sulphides. This proves that the dolomite was dissolving and collapsing at the same time that sulphides and baryte precipitated into the cavity (Corbella et al., 2007).

09135230014947913806182.jpg
Mineralized bodies
02762140014947913773861.jpg
Gypsum on mine walls
09135230014947913806182.jpg
Mineralized bodies
04302140014949701573629.jpg
Gypsum on mine walls
05958450014973749099391.jpg
Mineralized bodies
02762140014947913773861.jpg
Gypsum on mine walls

The result of all are isolated baryte fillings or, more commonly, joined among themselves by fissures, filled in the dolomite and generally developed following the stratification and the diaclasis. The size of these fillings is highly variable (between centimetre-sized to metre-sized) and are formed by the accumulation of spatic aggregates, often with large crystals grown radially from the base of the cavity. In the area of contact of barytes fillings and dolomite we can find masses of sulphides, with thicknesses varying between millimetre to centimetre sized. These masses of sulphides appear to be more important in the lower parts of the cavities.

Therefore, what we can find on the walls of the galleries are not true baryte and sulphide veins, but the visible part of the baryte fillings, surrounded by the layer of sulphides (largely altered), and the whole fitting within the dolomites, usually very compact. Alteration of sulphides has resulted in the formation of many secondary minerals, which are the main object of the present study. These secondary minerals fill fissures and small geodes within the sulphide layer and on the edges of the contact of this layer with baryte or dolomite.

In addition, there are some sections of the lower levels where there is no dolomite outcrop, but masses of grey schists, which are altered and fragmented. These masses of schists usually appear below the layer of dolomite, which can be clearly seen in some of the galleries (schist on the walls and dolomite on the ceiling).

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


58 valid minerals.

Detailed Mineral List:

Adamite
Formula: Zn2(AsO4)(OH)
Reference: Joan Rosell
Adamite var: Cuprian Adamite
Formula: (Zn,Cu)2AsO4OH
Reference: Joan Rosell
Anglesite
Formula: PbSO4
Reference: Joan Rosell
Aragonite
Formula: CaCO3
Reference: Joan Rosell
Arsenopyrite
Formula: FeAsS
Asbolane
Formula: (Ni,Co)2-xMn4+(O,OH)4 · nH2O
Reference: Joan Rosell
Azurite
Formula: Cu3(CO3)2(OH)2
Reference: David Soler collection
Bariopharmacosiderite
Formula: Ba0.5Fe3+4(AsO4)3(OH)4 · 5H2O
Reference: Joan Rosell
Baryte
Formula: BaSO4
Reference: Canals, A., Cardellach, E., Moritz, R., and Soler, A. (1999): Mineralium Deposita 34, 199-210.
Bayldonite
Formula: PbCu3(AsO4)2(OH)2
Reference: Joan Rosell
Boulangerite
Formula: Pb5Sb4S11
Bournonite
Formula: PbCuSbS3
Reference: Guitard, G. (2010): Catalogue raisonné de la collection de minéralogie régionale, C.E.R.P. de Tautavel, 135.
Brochantite
Formula: Cu4(SO4)(OH)6
Reference: Joan Rosell
Calcite
Formula: CaCO3
Cerussite
Formula: PbCO3
Reference: Joan Rosell
Chalcanthite
Formula: CuSO4 · 5H2O
Reference: Joan Rosell
Chalcocite
Formula: Cu2S
Chalcopyrite
Formula: CuFeS2
Reference: Canals, A., Cardellach, E., Moritz, R., and Soler, A. (1999): Mineralium Deposita 34, 199-210.
Claraite
Formula: (Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14·7H2O
Habit: Tabular pseudohexagonal crystals. Crusts.
Colour: Blue
Description: It is one of the most interesting species of the site and the first find in Catalonia. In the rest of the Iberian Peninsula it has only been found in the "La Amorosa" mine, Villahermosa del Río, Castellon (Cócera et al., 2010). The type locality is the “Clara” mine in Oberwolfach (Baden-Würtenberg , Germany) and characterized as hydrated copper and zinc hydroxylcarbonate (Walenta and Dunn, 1982). The structure has not yet been solved and only crystallographic constants are known (Walenta, 1999). According to Kolitsch, in an still unpublished study, the original formula is incorrect and should be amended, stating at least the arsenate anion (AsO4)-3 as arsenic appears to be almost always present. In addition, it is relatively common the presence of sulphur as sulfate anion (SO4)-2. It appears as rosettes, divergent groups and spherulitic aggregates up to 1 mm, which can form druses up to a few squared centimeters, and also in more or less crystalline crusts. Color is intense sky blue in rosettes and crystal groups, and pale sky blue to bluish white in crusts. Individual crystals have tabular habit, often with hexagonal outline (claraite is triclinic pseudohexagonal) and are up to 0.4 mm. It appears on dolomia matrix or filling fissures of baryte or dolomite, close to chalcopyrite and altered fahlore. It is often found associated to theisite, azurite (this mineral sometimes grows on claraite), aragonite and tyrolite. Claraite from the Les Ferreras mine has been analyzed by SEM-EDS and confirmed by XRD. There is arsenic in all samples characterized, and in some of them there is also a low sulfur content, such as with claraite from Villahermosa del Río and from the Brixlegg-Schwaz (Tyrol, Austria) a mining area studied by Schnorrer (1994), Kolitsch (2007-2010) and Hepp & Hajek (2008). Our results reinforce the idea that the formula should be modified, stating at least the arsenate anion. Perhaps the formula should be written as that of tyrolite, presented later. In the case of claraite from Rocabruna, the average relationship Zn :Cu is approximately 1:4,5. The empirical formula is approximately: Cu,Zn)~10[(OH)~11|(SO4)0-0.5|(AsO4)0.3-1.5|(CO3)2.5-3] +nH2O
Reference: Garrido, J.L., Rosell, J., Viñals, J., Bártulos, V., Mingueza, P., Ortiz, X and Vinyoles, J. (2013): "Mineralogy of Les Ferreres mine, Rocabruna, Camprodon, Catalonia". Mineral Up, Vol.3, Nr.4, 6-23. Rosell, J., Garrido, J.L., Viñals, J., Bártulos, V., Vinyoles, J., Ortiz, X., Mingueza, P., Masons, G., Bobi, F. (2014): Rocabruna i el seu entorn. La mina de les Ferreres. Edited by the authors and Grup Mineralògic Català. 128 pages (with the mineralogy chapters in Spanish and English).
Cobaltkoritnigite
Formula: (Co,Zn)(HAsO4) · H2O
Reference: Joan Rosell
Connellite
Formula: Cu19(SO4)(OH)32Cl4 · 3H2O
Reference: Joan Rosell
Covellite
Formula: CuS
Reference: Joan Rosell
Crednerite
Formula: CuMnO2
Reference: Joan Rosell
Cuprite
Formula: Cu2O
Reference: Joan Rosell
Devilline
Formula: CaCu4(SO4)2(OH)6 · 3H2O
Reference: Joan Rosell
Dolomite
Formula: CaMg(CO3)2
Reference: Canals, A., Cardellach, E., Moritz, R., and Soler, A. (1999): Mineralium Deposita 34, 199-210.
Duftite
Formula: PbCu(AsO4)(OH)
Reference: Joan Rosell
Epsomite
Formula: MgSO4 · 7H2O
Reference: Joan Rosell
Erythrite
Formula: Co3(AsO4)2 · 8H2O
Reference: Joan Rosell
Galena
Formula: PbS
Reference: Canals, A., Cardellach, E., Moritz, R., and Soler, A. (1999): Mineralium Deposita 34, 199-210.
Goethite
Formula: α-Fe3+O(OH)
Reference: Joan Rosell
Gypsum
Formula: CaSO4 · 2H2O
Hematite
Formula: Fe2O3
Hemimorphite
Formula: Zn4Si2O7(OH)2 · H2O
Reference: Joan Rosell
Hydrozincite
Formula: Zn5(CO3)2(OH)6
Reference: Joan Rosell
Jarosite
Formula: KFe3+ 3(SO4)2(OH)6
Reference: Joan Rosell
Langite
Formula: Cu4(SO4)(OH)6 · 2H2O
Reference: Joan Rosell
Leogangite
Formula: Cu10(AsO4)4(SO4)(OH)6 · 8H2O
Reference: Rosell, J. et al. (2014): UK-112: Leogangita de la mina de les Ferreres, Rocabruna, Camprodon, Girona, Catalunya. Infominer, 61 (3/2014).
Linarite
Formula: PbCu(SO4)(OH)2
Reference: Joan Rosell
Malachite
Formula: Cu2(CO3)(OH)2
Reference: David Soler collection
Marcasite
Formula: FeS2
Mimetite
Formula: Pb5(AsO4)3Cl
Reference: Joan Rosell
Natrojarosite
Formula: NaFe3(SO4)2(OH)6
Reference: Joan Rosell
Olivenite
Formula: Cu2(AsO4)(OH)
Reference: Joan Rosell
Olivenite var: Leucochalcite
Reference: Guitard, G. (2010): Catalogue raisonné de la collection de minéralogie régionale, C.E.R.P. de Tautavel, 124.
Orthoserpierite
Formula: Ca(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Reference: Joan Rosell
Oxyplumboroméite
Formula: Pb2Sb2O6O
Reference: Joan Rosell
Pharmacosiderite
Formula: KFe3+4(AsO4)3(OH)4 · 6-7H2O
Reference: Joan Rosell
Posnjakite
Formula: Cu4(SO4)(OH)6 · H2O
Reference: Joan Rosell
Pyrite
Formula: FeS2
Reference: Canals, A., Cardellach, E., Moritz, R., and Soler, A. (1999): Mineralium Deposita 34, 199-210.
Quartz
Formula: SiO2
Reference: Canals, A., Cardellach, E., Moritz, R., and Soler, A. (1999): Mineralium Deposita 34, 199-210.
Rosasite
Formula: (Cu,Zn)2(CO3)(OH)2
Reference: Joan Rosell
Scorodite
Formula: Fe3+AsO4 · 2H2O
Reference: Joan Rosell
Serpierite
Formula: Ca(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Reference: Joan Rosell
Smithsonite
Formula: ZnCO3
Reference: Joan Rosell
Sphalerite
Formula: ZnS
Reference: Canals, A., Cardellach, E., Moritz, R., and Soler, A. (1999): Mineralium Deposita 34, 199-210.
Stibnite
Formula: Sb2S3
'Tennantite'
Formula: Cu6[Cu4(X)2]As4S12S
Reference: Canals, A., Cardellach, E., Moritz, R., and Soler, A. (1999): Mineralium Deposita 34, 199-210.
'Tetrahedrite'
Formula: Cu6Cu4(X)2Sb4S13
Reference: Canals, A., Cardellach, E., Moritz, R., and Soler, A. (1999): Mineralium Deposita 34, 199-210.
Theisite
Formula: Cu5Zn5(AsO4,SbO4)2(OH)14
Reference: Joan Rosell
Tyrolite
Formula: Ca2Cu9(AsO4)4(CO3)(OH)8 · 11H2O
Reference: Joan Rosell
Zincolivenite
Formula: CuZn(AsO4)(OH)
Reference: Joan Rosell

List of minerals arranged by Strunz 10th Edition classification

Group 2 - Sulphides and Sulfosalts
Arsenopyrite2.EB.20FeAsS
Boulangerite2.HC.15Pb5Sb4S11
Bournonite2.GA.50PbCuSbS3
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Covellite2.CA.05aCuS
Galena2.CD.10PbS
Marcasite2.EB.10aFeS2
Pyrite2.EB.05aFeS2
Sphalerite2.CB.05aZnS
Stibnite2.DB.05Sb2S3
'Tennantite'2.GB.05Cu6[Cu4(X)2]As4S12S
'Tetrahedrite'2.GB.05Cu6Cu4(X)2Sb4S13
Group 3 - Halides
Connellite3.DA.25Cu19(SO4)(OH)32Cl4 · 3H2O
Group 4 - Oxides and Hydroxides
Asbolane4.FL.30(Ni,Co)2-xMn4+(O,OH)4 · nH2O
Crednerite4.AB.05CuMnO2
Cuprite4.AA.10Cu2O
Goethite4.00.α-Fe3+O(OH)
Hematite4.CB.05Fe2O3
Oxyplumboroméite4.DH.Pb2Sb2O6O
Quartz4.DA.05SiO2
Group 5 - Nitrates and Carbonates
Aragonite5.AB.15CaCO3
Azurite5.BA.05Cu3(CO3)2(OH)2
Calcite5.AB.05CaCO3
Cerussite5.AB.15PbCO3
Claraite5.DA.30(Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14·7H2O
Dolomite5.AB.10CaMg(CO3)2
Hydrozincite5.BA.15Zn5(CO3)2(OH)6
Malachite5.BA.10Cu2(CO3)(OH)2
Rosasite5.BA.10(Cu,Zn)2(CO3)(OH)2
Smithsonite5.AB.05ZnCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Anglesite7.AD.35PbSO4
Baryte7.AD.35BaSO4
Brochantite7.BB.25Cu4(SO4)(OH)6
Chalcanthite7.CB.20CuSO4 · 5H2O
Devilline7.DD.30CaCu4(SO4)2(OH)6 · 3H2O
Epsomite7.CB.40MgSO4 · 7H2O
Gypsum7.CD.40CaSO4 · 2H2O
Jarosite7.BC.10KFe3+3(SO4)2(OH)6
Langite7.DD.10Cu4(SO4)(OH)6 · 2H2O
Linarite7.BC.65PbCu(SO4)(OH)2
Natrojarosite7.BC.10NaFe3(SO4)2(OH)6
Orthoserpierite7.DD.30Ca(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Posnjakite7.DD.10Cu4(SO4)(OH)6 · H2O
Serpierite7.DD.30Ca(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Group 8 - Phosphates, Arsenates and Vanadates
Adamite8.BB.30Zn2(AsO4)(OH)
var: Cuprian Adamite8.BB.30(Zn,Cu)2AsO4OH
Bariopharmacosiderite8.DK.10Ba0.5Fe3+4(AsO4)3(OH)4 · 5H2O
Bayldonite8.BH.45PbCu3(AsO4)2(OH)2
Cobaltkoritnigite8.CB.20(Co,Zn)(HAsO4) · H2O
Duftite8.BH.35PbCu(AsO4)(OH)
Erythrite8.CE.40Co3(AsO4)2 · 8H2O
Leogangite8.CC.15Cu10(AsO4)4(SO4)(OH)6 · 8H2O
Mimetite8.BN.05Pb5(AsO4)3Cl
Olivenite8.BB.30Cu2(AsO4)(OH)
var: Leucochalcite8.BB.30Cu2(AsO4)(OH)
Pharmacosiderite8.DK.10KFe3+4(AsO4)3(OH)4 · 6-7H2O
Scorodite8.CD.10Fe3+AsO4 · 2H2O
Theisite8.BE.75Cu5Zn5(AsO4,SbO4)2(OH)14
Tyrolite8.DM.10Ca2Cu9(AsO4)4(CO3)(OH)8 · 11H2O
Zincolivenite8.BB.30CuZn(AsO4)(OH)
Group 9 - Silicates
Hemimorphite9.BD.10Zn4Si2O7(OH)2 · H2O

List of minerals arranged by Dana 8th Edition classification

Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Chalcocite2.4.7.1Cu2S
AmXp, with m:p = 1:1
Covellite2.8.12.1CuS
Galena2.8.1.1PbS
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 2:3
Stibnite2.11.2.1Sb2S3
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Marcasite2.12.2.1FeS2
Pyrite2.12.1.1FeS2
Group 3 - SULFOSALTS
3 <ø < 4
'Tennantite'3.3.6.2Cu6[Cu4(X)2]As4S12S
'Tetrahedrite'3.3.6.1Cu6Cu4(X)2Sb4S13
ø = 3
Bournonite3.4.3.2PbCuSbS3
2.5 < ø < 3
Boulangerite3.5.2.1Pb5Sb4S11
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
A2X3
Hematite4.3.1.2Fe2O3
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Miscellaneous
Asbolane6.4.9.1(Ni,Co)2-xMn4+(O,OH)4 · nH2O
Group 7 - MULTIPLE OXIDES
ABX2
Crednerite7.1.2.1CuMnO2
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Cerussite14.1.3.4PbCO3
Smithsonite14.1.1.6ZnCO3
AB(XO3)2
Dolomite14.2.1.1CaMg(CO3)2
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Azurite16a.2.1.1Cu3(CO3)2(OH)2
Malachite16a.3.1.1Cu2(CO3)(OH)2
Rosasite16a.3.1.2(Cu,Zn)2(CO3)(OH)2
Hydrozincite16a.4.1.1Zn5(CO3)2(OH)6
Group 16b - HYDRATED CARBONATES CONTAINING HYDROXYL OR HALOGEN
Claraite16b.4.3.1(Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14·7H2O
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Anglesite28.3.1.3PbSO4
Baryte28.3.1.1BaSO4
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Chalcanthite29.6.7.1CuSO4 · 5H2O
Epsomite29.6.11.1MgSO4 · 7H2O
Gypsum29.6.3.1CaSO4 · 2H2O
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)m(XO4)pZq, where m:p>2:1
Brochantite30.1.3.1Cu4(SO4)(OH)6
(AB)2(XO4)Zq
Jarosite30.2.5.1KFe3+ 3(SO4)2(OH)6
Linarite30.2.3.1PbCu(SO4)(OH)2
Group 31 - HYDRATED SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)m(XO4)pZq·xH2O, where m:p > 6:1
Connellite31.1.1.1Cu19(SO4)(OH)32Cl4 · 3H2O
(AB)4(XO4)Zq·xH2O
Langite31.4.3.1Cu4(SO4)(OH)6 · 2H2O
Posnjakite31.4.1.1Cu4(SO4)(OH)6 · H2O
(AB)5(XO4)2Zq·xH2O
Devilline31.6.1.1CaCu4(SO4)2(OH)6 · 3H2O
Orthoserpierite31.6.7.1Ca(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Serpierite31.6.2.1Ca(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Group 39 - HYDRATED ACID PHOSPHATES,ARSENATES AND VANADATES
A[HXO4]·xH2O
Cobaltkoritnigite39.1.4.2(Co,Zn)(HAsO4) · H2O
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
A3(XO4)2·xH2O
Erythrite40.3.6.3Co3(AsO4)2 · 8H2O
(AB)5(XO4)2·xH2O
Scorodite40.4.1.3Fe3+AsO4 · 2H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)m(XO4)pZq, where m:p > 4:1
Theisite41.1.2.1Cu5Zn5(AsO4,SbO4)2(OH)14
(AB)2(XO4)Zq
Bayldonite41.5.14.1PbCu3(AsO4)2(OH)2
Duftite41.5.1.4PbCu(AsO4)(OH)
A2(XO4)Zq
Adamite41.6.6.3Zn2(AsO4)(OH)
Olivenite41.6.6.1Cu2(AsO4)(OH)
Zincolivenite41.6.5.6CuZn(AsO4)(OH)
A5(XO4)3Zq
Mimetite41.8.4.2Pb5(AsO4)3Cl
Group 42 - HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)5(XO4)2Zq·xH2O
Tyrolite42.4.3.1Ca2Cu9(AsO4)4(CO3)(OH)8 · 11H2O
(AB)5(XO4)3Zq·xH2O
Bariopharmacosiderite42.8.1a.3Ba0.5Fe3+4(AsO4)3(OH)4 · 5H2O
Pharmacosiderite42.8.1a.1KFe3+4(AsO4)3(OH)4 · 6-7H2O
Group 56 - SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
Si2O7 Groups and O, OH, F, and H2O with cations in [4] coordination
Hemimorphite56.1.2.1Zn4Si2O7(OH)2 · H2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Unclassified Minerals, Mixtures, etc.
Adamite
var: Cuprian Adamite
-(Zn,Cu)2AsO4OH
Aragonite-CaCO3
Leogangite-Cu10(AsO4)4(SO4)(OH)6 · 8H2O
Natrojarosite-NaFe3(SO4)2(OH)6
Olivenite
var: Leucochalcite
-Cu2(AsO4)(OH)
Oxyplumboroméite-Pb2Sb2O6O

List of minerals for each chemical element

HHydrogen
H Claraite(Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14·7H2O
H GypsumCaSO4 · 2H2O
H MalachiteCu2(CO3)(OH)2
H AzuriteCu3(CO3)2(OH)2
H ConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
H Asbolane(Ni,Co)2-xMn4+(O,OH)4 · nH2O
H Goethiteα-Fe3+O(OH)
H Rosasite(Cu,Zn)2(CO3)(OH)2
H HydrozinciteZn5(CO3)2(OH)6
H BrochantiteCu4(SO4)(OH)6
H DevillineCaCu4(SO4)2(OH)6 · 3H2O
H LangiteCu4(SO4)(OH)6 · 2H2O
H ChalcanthiteCuSO4 · 5H2O
H EpsomiteMgSO4 · 7H2O
H JarositeKFe3+ 3(SO4)2(OH)6
H LinaritePbCu(SO4)(OH)2
H NatrojarositeNaFe3(SO4)2(OH)6
H SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
H OrthoserpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
H AdamiteZn2(AsO4)(OH)
H OliveniteCu2(AsO4)(OH)
H ZincoliveniteCuZn(AsO4)(OH)
H DuftitePbCu(AsO4)(OH)
H TheisiteCu5Zn5(AsO4,SbO4)2(OH)14
H TyroliteCa2Cu9(AsO4)4(CO3)(OH)8 · 11H2O
H BariopharmacosideriteBa0.5Fe43+(AsO4)3(OH)4 · 5H2O
H PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
H ScoroditeFe3+AsO4 · 2H2O
H HemimorphiteZn4Si2O7(OH)2 · H2O
H PosnjakiteCu4(SO4)(OH)6 · H2O
H Cobaltkoritnigite(Co,Zn)(HAsO4) · H2O
H ErythriteCo3(AsO4)2 · 8H2O
H Adamite (var: Cuprian Adamite)(Zn,Cu)2AsO4OH
H BayldonitePbCu3(AsO4)2(OH)2
H LeogangiteCu10(AsO4)4(SO4)(OH)6 · 8H2O
CCarbon
C Claraite(Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14·7H2O
C MalachiteCu2(CO3)(OH)2
C AzuriteCu3(CO3)2(OH)2
C DolomiteCaMg(CO3)2
C CalciteCaCO3
C Rosasite(Cu,Zn)2(CO3)(OH)2
C AragoniteCaCO3
C CerussitePbCO3
C HydrozinciteZn5(CO3)2(OH)6
C SmithsoniteZnCO3
C TyroliteCa2Cu9(AsO4)4(CO3)(OH)8 · 11H2O
OOxygen
O Claraite(Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14·7H2O
O BaryteBaSO4
O GypsumCaSO4 · 2H2O
O QuartzSiO2
O MalachiteCu2(CO3)(OH)2
O AzuriteCu3(CO3)2(OH)2
O DolomiteCaMg(CO3)2
O HematiteFe2O3
O CalciteCaCO3
O ConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
O OxyplumboroméitePb2Sb2O6O
O CredneriteCuMnO2
O Asbolane(Ni,Co)2-xMn4+(O,OH)4 · nH2O
O CupriteCu2O
O Goethiteα-Fe3+O(OH)
O Rosasite(Cu,Zn)2(CO3)(OH)2
O AragoniteCaCO3
O CerussitePbCO3
O HydrozinciteZn5(CO3)2(OH)6
O SmithsoniteZnCO3
O BrochantiteCu4(SO4)(OH)6
O DevillineCaCu4(SO4)2(OH)6 · 3H2O
O LangiteCu4(SO4)(OH)6 · 2H2O
O AnglesitePbSO4
O ChalcanthiteCuSO4 · 5H2O
O EpsomiteMgSO4 · 7H2O
O JarositeKFe3+ 3(SO4)2(OH)6
O LinaritePbCu(SO4)(OH)2
O NatrojarositeNaFe3(SO4)2(OH)6
O SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
O OrthoserpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
O AdamiteZn2(AsO4)(OH)
O OliveniteCu2(AsO4)(OH)
O ZincoliveniteCuZn(AsO4)(OH)
O DuftitePbCu(AsO4)(OH)
O TheisiteCu5Zn5(AsO4,SbO4)2(OH)14
O TyroliteCa2Cu9(AsO4)4(CO3)(OH)8 · 11H2O
O BariopharmacosideriteBa0.5Fe43+(AsO4)3(OH)4 · 5H2O
O MimetitePb5(AsO4)3Cl
O PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
O ScoroditeFe3+AsO4 · 2H2O
O HemimorphiteZn4Si2O7(OH)2 · H2O
O PosnjakiteCu4(SO4)(OH)6 · H2O
O Cobaltkoritnigite(Co,Zn)(HAsO4) · H2O
O ErythriteCo3(AsO4)2 · 8H2O
O Adamite (var: Cuprian Adamite)(Zn,Cu)2AsO4OH
O BayldonitePbCu3(AsO4)2(OH)2
O LeogangiteCu10(AsO4)4(SO4)(OH)6 · 8H2O
NaSodium
Na NatrojarositeNaFe3(SO4)2(OH)6
MgMagnesium
Mg DolomiteCaMg(CO3)2
Mg EpsomiteMgSO4 · 7H2O
SiSilicon
Si QuartzSiO2
Si HemimorphiteZn4Si2O7(OH)2 · H2O
SSulfur
S Claraite(Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14·7H2O
S BaryteBaSO4
S PyriteFeS2
S SphaleriteZnS
S TetrahedriteCu6Cu4(X)2Sb4S13
S TennantiteCu6[Cu4(X)2]As4S12S
S ChalcopyriteCuFeS2
S GypsumCaSO4 · 2H2O
S GalenaPbS
S StibniteSb2S3
S BoulangeritePb5Sb4S11
S BournonitePbCuSbS3
S ArsenopyriteFeAsS
S ChalcociteCu2S
S MarcasiteFeS2
S CovelliteCuS
S ConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
S BrochantiteCu4(SO4)(OH)6
S DevillineCaCu4(SO4)2(OH)6 · 3H2O
S LangiteCu4(SO4)(OH)6 · 2H2O
S AnglesitePbSO4
S ChalcanthiteCuSO4 · 5H2O
S EpsomiteMgSO4 · 7H2O
S JarositeKFe3+ 3(SO4)2(OH)6
S LinaritePbCu(SO4)(OH)2
S NatrojarositeNaFe3(SO4)2(OH)6
S SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
S OrthoserpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
S PosnjakiteCu4(SO4)(OH)6 · H2O
S LeogangiteCu10(AsO4)4(SO4)(OH)6 · 8H2O
ClChlorine
Cl ConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
Cl MimetitePb5(AsO4)3Cl
KPotassium
K JarositeKFe3+ 3(SO4)2(OH)6
K PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
CaCalcium
Ca GypsumCaSO4 · 2H2O
Ca DolomiteCaMg(CO3)2
Ca CalciteCaCO3
Ca AragoniteCaCO3
Ca DevillineCaCu4(SO4)2(OH)6 · 3H2O
Ca SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Ca OrthoserpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Ca TyroliteCa2Cu9(AsO4)4(CO3)(OH)8 · 11H2O
MnManganese
Mn CredneriteCuMnO2
Mn Asbolane(Ni,Co)2-xMn4+(O,OH)4 · nH2O
FeIron
Fe PyriteFeS2
Fe ChalcopyriteCuFeS2
Fe HematiteFe2O3
Fe ArsenopyriteFeAsS
Fe MarcasiteFeS2
Fe Goethiteα-Fe3+O(OH)
Fe JarositeKFe3+ 3(SO4)2(OH)6
Fe NatrojarositeNaFe3(SO4)2(OH)6
Fe BariopharmacosideriteBa0.5Fe43+(AsO4)3(OH)4 · 5H2O
Fe PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
Fe ScoroditeFe3+AsO4 · 2H2O
CoCobalt
Co Asbolane(Ni,Co)2-xMn4+(O,OH)4 · nH2O
Co Cobaltkoritnigite(Co,Zn)(HAsO4) · H2O
Co ErythriteCo3(AsO4)2 · 8H2O
NiNickel
Ni Asbolane(Ni,Co)2-xMn4+(O,OH)4 · nH2O
CuCopper
Cu Claraite(Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14·7H2O
Cu TetrahedriteCu6Cu4(X)2Sb4S13
Cu TennantiteCu6[Cu4(X)2]As4S12S
Cu ChalcopyriteCuFeS2
Cu MalachiteCu2(CO3)(OH)2
Cu AzuriteCu3(CO3)2(OH)2
Cu BournonitePbCuSbS3
Cu ChalcociteCu2S
Cu CovelliteCuS
Cu ConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
Cu CredneriteCuMnO2
Cu CupriteCu2O
Cu Rosasite(Cu,Zn)2(CO3)(OH)2
Cu BrochantiteCu4(SO4)(OH)6
Cu DevillineCaCu4(SO4)2(OH)6 · 3H2O
Cu LangiteCu4(SO4)(OH)6 · 2H2O
Cu ChalcanthiteCuSO4 · 5H2O
Cu LinaritePbCu(SO4)(OH)2
Cu SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Cu OrthoserpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Cu OliveniteCu2(AsO4)(OH)
Cu ZincoliveniteCuZn(AsO4)(OH)
Cu DuftitePbCu(AsO4)(OH)
Cu TheisiteCu5Zn5(AsO4,SbO4)2(OH)14
Cu TyroliteCa2Cu9(AsO4)4(CO3)(OH)8 · 11H2O
Cu PosnjakiteCu4(SO4)(OH)6 · H2O
Cu Adamite (var: Cuprian Adamite)(Zn,Cu)2AsO4OH
Cu BayldonitePbCu3(AsO4)2(OH)2
Cu LeogangiteCu10(AsO4)4(SO4)(OH)6 · 8H2O
ZnZinc
Zn Claraite(Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14·7H2O
Zn SphaleriteZnS
Zn Rosasite(Cu,Zn)2(CO3)(OH)2
Zn HydrozinciteZn5(CO3)2(OH)6
Zn SmithsoniteZnCO3
Zn SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Zn OrthoserpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Zn AdamiteZn2(AsO4)(OH)
Zn ZincoliveniteCuZn(AsO4)(OH)
Zn TheisiteCu5Zn5(AsO4,SbO4)2(OH)14
Zn HemimorphiteZn4Si2O7(OH)2 · H2O
Zn Adamite (var: Cuprian Adamite)(Zn,Cu)2AsO4OH
AsArsenic
As Claraite(Cu,Zn)15(CO3)4(AsO4)2(SO4)(OH)14·7H2O
As TennantiteCu6[Cu4(X)2]As4S12S
As ArsenopyriteFeAsS
As AdamiteZn2(AsO4)(OH)
As OliveniteCu2(AsO4)(OH)
As ZincoliveniteCuZn(AsO4)(OH)
As DuftitePbCu(AsO4)(OH)
As TheisiteCu5Zn5(AsO4,SbO4)2(OH)14
As TyroliteCa2Cu9(AsO4)4(CO3)(OH)8 · 11H2O
As BariopharmacosideriteBa0.5Fe43+(AsO4)3(OH)4 · 5H2O
As MimetitePb5(AsO4)3Cl
As PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
As ScoroditeFe3+AsO4 · 2H2O
As Cobaltkoritnigite(Co,Zn)(HAsO4) · H2O
As ErythriteCo3(AsO4)2 · 8H2O
As Adamite (var: Cuprian Adamite)(Zn,Cu)2AsO4OH
As BayldonitePbCu3(AsO4)2(OH)2
As LeogangiteCu10(AsO4)4(SO4)(OH)6 · 8H2O
SbAntimony
Sb TetrahedriteCu6Cu4(X)2Sb4S13
Sb StibniteSb2S3
Sb BoulangeritePb5Sb4S11
Sb BournonitePbCuSbS3
Sb OxyplumboroméitePb2Sb2O6O
Sb TheisiteCu5Zn5(AsO4,SbO4)2(OH)14
BaBarium
Ba BaryteBaSO4
Ba BariopharmacosideriteBa0.5Fe43+(AsO4)3(OH)4 · 5H2O
PbLead
Pb GalenaPbS
Pb BoulangeritePb5Sb4S11
Pb BournonitePbCuSbS3
Pb OxyplumboroméitePb2Sb2O6O
Pb CerussitePbCO3
Pb AnglesitePbSO4
Pb LinaritePbCu(SO4)(OH)2
Pb DuftitePbCu(AsO4)(OH)
Pb MimetitePb5(AsO4)3Cl
Pb BayldonitePbCu3(AsO4)2(OH)2

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Rosell, J., Garrido, J.L., Viñals, J., Bártulos, V., Vinyoles, J., Ortiz, X., Mingueza, P., Masons, G., Bobi, F. (2014): Rocabruna i el seu entorn. La mina de les Ferreres. Edited by the authors and Grup Mineralògic Català. 128 pages (with the mineralogy chapters in Spanish and English).
Garrido, J.L., Rosell, J., Viñals, J., Bártulos, V., Mingueza, P., Ortiz, X and Vinyoles, J. (2013): "Mineralogy of Les Ferreres mine, Rocabruna, Camprodon, Catalonia". Mineral Up, Vol.3, Nr.4, 6-23.
Garrido, J.L., Rosell, J., Viñals, J., Bártulos, V., Mingueza, P., Ortiz, X and Vinyoles, J. (2013): "Mineralogia de la mina de les Ferreres, Rocabruna, Camprodon, Catalunya". Mineralogistes de Catalunya, Vol.XI, No.4, 6-23. (Catalan version).
Soler, A. (1983): Estudi metal·logenètic del sector de Rocabruna-La Menera (Pirineu Oriental). Universitat de Barcelona, 118 pages. [not published].
Soler, A.; Ayora, C. (1985): “La mineralització kàrstica (Ba, Cu, Pb, Zn, Sb) de Rocabruna i de Can Pubill, Pirineu Oriental: geologia, morfologia i gènesi”. Acta Geol. Hispànica, 20, 2: 107-122.
Canals, A., Cardellach, E., Moritz, R., and Soler, A. (1999): "The influence of enclosing rock type on barite deposits, eastern Pyrenees, Spain: fluid inclusion and isotope (Sr, S, O, C) data". Mineralium Deposita, 34, 199-210.
Corbella, M.; Cardellach, E.; Ayora, C. (2007). “Disolución y precipitación de carbonatos en sistemas hidrotermales. Implicaciones en la génesis de depósitos tipo MVT”. Boletín Soc. Geológica Mexicana, LIX, 1: 83-99.

External Links


Other Regions, Features and Areas containg this locality

Eurasian PlateTectonic Plate
EuropeContinent

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: October 20, 2019 10:46:06 Page generated: October 20, 2019 08:04:52
Go to top of page