IMPORTANT MESSAGE. We need your support now to keep mindat.org running. Click here to find out why.
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for Educators
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Torr Works Quarry (Merehead Quarry), Cranmore, Somerset, England, UK

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Torr Works Quarry General View, July 2005

Torr Works Quarry, Cranmore, Somerset, England, UK
Latitude & Longitude (WGS84): 51° 11' 44'' North , 2° 26' 11'' West
Latitude & Longitude (decimal): 51.19556,-2.43639
GeoHash:G#: gcn70xcgs
UK National Grid Reference:ST695442
Locality type:Quarry
Köppen climate type:Cfb : Temperate oceanic climate


Torr Works Quarry is the correct name of the quarry known by collectors (and seen on maps) as 'Merehead Quarry'. Merehead is actually the name of the railway head at the quarry.
A limestone quarry run for many years by Foster Yeoman, but now owned and operated by Aggregate Industries. Annual output 6 million tonnes (taken from their website).

NOTE: "... most of the new specimens sold during 2007/2008 as Merehead Quarry, are actually from Durnford Quarry." (http://www.mindat.org/mesg-11-135845.html)

Alternative Label Names

This is a list of additional names that have been recorded for mineral labels associated with this locality in the minID database. This may include previous versions of the locality name hierarchy from mindat.org, data entry errors, and it may also include unconfirmed sublocality names or other names that can only be matched to this level.

Torr works merehead Somerset

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


67 valid minerals. 8 (TL) - type locality of valid minerals. 3 erroneous literature entries.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Allophane
Formula: (Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Alumohydrocalcite
Formula: CaAl2(CO3)2(OH)4 · 4H2O
Habit: Acicular / hair-like xx
Colour: white, cream, colourless
Fluorescence: n.d.
Description: Occurs as small areas (<2mm) of intergrown hairlike crystals giving a felted appearance. Originally thought to be dundasite, with which it occurs, but dundasite crystals are much thicker and more distinct.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner R.W. and Rumsey, M.S. (2007) Merehead Mineralogy - an Update. Russell Soc Newsletter, No 50, pp 17-18 (March 2007)
Ankerite
Formula: Ca(Fe2+,Mg)(CO3)2
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
'Apatite'
Reference: Turner, R. (2006): A mechanism for the formation of the mineralized Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine 70, 629-653.
'Apatite var: Collophane'
Reference: Turner, R. (2006): A mechanism for the formation of the mineralized Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine 70, 629-653.
'Apophyllite'
Habit: massive; aggregates of larger (< 10mm x 10mm) tabular crystals
Colour: white
Fluorescence: none
Description: A small number of specimens were recovered in the early 1970's, associated with datolite in the hydrothermal quartz veins at Merehead, not the manganese deposits.
Reference: Symes, R.F. (1977) Datolite and apophyllite from the Mendips. Mineralogical Magazine: 41 (319): 410-411.; Turner, R.W., (2006) A mechanism for the formation of the mineralised Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine: 70 (6): 629-653.; Turner, R.W. and Rumsey, M.S. (2010) Mineral relationships in the Mendip Hills. Journal of the Russell Society: 13: 3-46.;
Aragonite
Formula: CaCO3
Habit: Bladed laths, hexagonal prismatic, and 'spear' shaped xls
Colour: Mostly colorless or white; occasionally pinkish or greenish.
Fluorescence: Some specimens fluoresce yellow with longwave UV
Description: Aragonite is widespread in small quantities at Merehead. Large masses or crystals are uncommon, however.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner, R.W., (2006) A Mechanism for the formation of the Mineralised Mn Deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine vol. 70, no. 6, pp 629 - 653
Ardennite-(As)
Formula: Mn2+4Al4(AlMg)(AsO4)(SiO4)2(Si3O10)(OH)6
Habit: aggregates of honey-yellow prismatic crystals in vein quartz.
Colour: lemon to honey yellow, sometimes appearing mid-brown due to oxide coatings
Fluorescence: n/a
Description: Two specimens of Ardennite were found in 1977 by Chris Parkinson in blocks of loose vein quartz near the #1 and #2 veins. Although written up at the time by Bob Symes the paper was never published. Visually very similar to Salmchâteau material, the chemistry is quite different, being As-rich and V-poor. Turner and Rumsey (2010) found that these specimens of ardennite are chemically almost identical to some material from Salmchâteau. The difference in chemistry originally considered diagnostic happened because the specimen (from S-C) with which the 'Merehead' material was originally compared was found on re-examination to really be ardennite-(V), a species not described at the time of the original comparison. They also found doubts about the provenance of the material, including a ten-year gap between the stated 1977 date of finding and submission of the material to the NHM. The specimens are quite unlike anything else found at Merehead (and in the Mendips in general). More investigation is needed, but unless this mineral is found again in situ, it's occurrence at Merehead must be regarded as highly doubtful.
Reference: Embrey, P.G. (1978) Fourth supplementary list of British minerals. Mineralogical Magazine, vol. 42, n° 322, 169-177; Turner, R. (2006): A mechanism for the formation of the mineralized Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine 70, 629-653; Turner R.W. and Rumsey, M.S. (2007) Merehead Mineralogy - an Update. Russell Soc Newsletter, No 50, pp 17-18 (March 2007); Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Azurite
Formula: Cu3(CO3)2(OH)2
Reference: Bill Gordon collection
Baryte
Formula: BaSO4
Habit: aggregates of platy crystals up to 2cm across
Colour: white
Reference: Bill Gordon collection; Symes, R.F. (1977) Datolite and apophyllite from the Mendips. Mineralogical Magazine: 41 (319): 410-411.
Blixite ?
Formula: Pb2(O,OH)2Cl
Description: The presence of a "blixite-like mineral" found at Merehead Quarry in the Mendips (often labelled as blixite) was subsequently confirmed to be the new mineral, mereheadite. The presence of blixite in the Mendips must be considered doubtful. Analysis of a large number of specimens (see Turner and Rumsey 2010) failed to find a single (genuine) specimen of blixite from anywhere in the Mendips, including Merehead. Most of the yellow material thought to be blixite is in fact paralaurionite.
Reference: Alabaster, C.J. (1975) Proc. Bristol Nat. Soc. 34, 89, 92.; Alabaster, C.J. (1977) An occurrence of brucite at Merehead Quarry, Cranmore, Somerset. Mineralogical Magazine: 41: 406-408.; Embrey, P.G. (1978) Fourth supplementary list of British minerals. Mineralogical Magazine: 42(322): 169-177.; Anthony, J.W. et al. (1997) Handbook of Mineralogy, Vol. 3, 67.; Jambor, J.L., Pertsev, N.N., and Roberts, A.C. (1999) New mineral names. American Mineralogist: 84: 1195-1198.; Turner, R.W. (2006) A mechanism for the formation of the mineralised Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine: 70(6): 629-653.; Turner, R.W. and Rumsey, M.S. (2010) Mineral relationships in the Mendip Hills. Journal of the Russell Society: 13: 3-46.
Brucite
Formula: Mg(OH)2
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Anthony, J. W. et al. (1997): Handbook of Mineralogy, Vol. 3, 67; Mineralogical Magazine 1977 41 : 406-408.
Calcite
Formula: CaCO3
Reference: Alabaster, C.J. (1977) An occurrence of brucite at Merehead Quarry, Cranmore, Somerset. Mineralogical Magazine: 41(319): 406-408.; Symes, R.F. (1977) Datolite and apophyllite from the Mendips. Mineralogical Magazine: 41(319): 410-411.; Jambor, J.L., Pertsev, N.N., and Roberts, A.C. (1999) New mineral names. American Mineralogist: 84: 1195-1198.
Cerussite
Formula: PbCO3
Reference: Symes, R.F. (1977) Datolite and apophyllite from the Mendips. Mineralogical Magazine: 41 (319): 410-411.; Jambor, J.L., Pertsev, N.N., and Roberts, A.C. (1999) New mineral names. American Mineralogist: 84: 1195-1198.
Cesàrolite
Formula: Pb(Mn4+)3O6(OH)2
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Chalcopyrite
Formula: CuFeS2
Habit: massive
Colour: brass-yellow
Fluorescence: none
Description: A single minute grain of relict chalcopyrite was found in manganese oxides from the pod recovered in July 2005. Specimen is now in the NHM.
Reference: Turner, R.W., (2006) A Mechanism for the formation of the Mineralised Mn Deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine vol. 70, no. 6, pp 629 - 653
Chloroxiphite
Formula: Pb3CuO2Cl2(OH)2
Habit: Sprays of acicular crystals, occasionally to over 2 cm.
Colour: Dark green
Fluorescence: None
Reference: Symes, R.F. (1977) Datolite and apophyllite from the Mendips. Mineralogical Magazine: 41 (319): 410-411.; Turner, R.W. (2006) A mechanism for the formation of the mineralised Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine: 70 (6): 629-653.; Siidra, O.I., Krivovichev, S.V., Turner, R.W., and Rumsey, M.S.(2008) Chloroxiphite Pb3CuO2(OH)2Cl2 structure refinement and description in terms of oxocentered OPb4 tetrahedra. Mineralogical Magazine: 72: 793-798.; Turner, R.W. and Rumsey, M.S. (2010): Mineral relationships in the Mendip Hills. Journal of the Russell Society: 13: 3-46.;
Chrysocolla
Formula: Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Habit: coatings, stains
Colour: bright blue
Fluorescence: none
Description: Bright blue coatings found in a manganese pod in June 2006 are an amorphous Cu:Si phase which has the chemistry of chrysocolla. Found with crednerite, wulfenite, aragonite, and cerussite.
Reference: Turner R.W. and Rumsey, M.S. (2007) Merehead Mineralogy - an Update. Russell Soc Newsletter, No 50, pp 17-18 (March 2007)
Copper
Formula: Cu
Habit: massive
Colour: copper coloured
Fluorescence: none
Description: An old specimen in the NHM collections contains a small amount of native copper, associated with cuprite.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46;
Coronadite
Formula: Pb(Mn4+6Mn3+2)O16
Reference: Turner, R. (2006): A mechanism for the formation of the mineralized Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine 70, 629-653.
Cotunnite
Formula: PbCl2
Habit: massive
Colour: in a mixture, but probably very pale blue or white
Fluorescence: n/a
Description: Cotunnite is a constituent of a small number of the light blue alteration haloes found around (darker blue) diaboleite crystals in mendipite. It does not appear in all haloes or alternatively is very sparsely dispersed as discrete 'grains' in a large amount of other material.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner R.W. and Rumsey, M.S. (2007) Merehead Mineralogy - an Update. Russell Soc Newsletter, No 50, pp 17-18 (March 2007); Turner, R.W., (2006) A Mechanism for the formation of the Mineralised Mn Deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine vol. 70, no. 6, pp 629 - 653
Crednerite
Formula: CuMnO2
Habit: Massive, bladed, platy in calcite
Colour: Very dark green to black
Fluorescence: none
Description: Invariably embedded in calcite, very rarely as free standing crystals. Crednerite is usually covered by an oxidation coating of malachite. Has been recently (2006-06) found replaced by kentrolite. 'Crednerite' has recently been found to be a mixture of at least three, possibly four different phases (see Turner and Rumsey 2010). Two of these predominate in the Mendips. In addition, there are a number of alteration phases that are derived from 'crednerite'. These various phases need further investigation, and proper characterisation.
Reference: Turner, R.W. (2005) A note on Crednerite from Merehead Quarry. Russell Soc Newsletter, No. 47, September 2005; Turner, R.W., (2006) A Mechanism for the formation of the Mineralised Mn Deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine vol. 70, no. 6, pp 629 - 653; Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Cryptomelane
Formula: K(Mn4+7Mn3+)O16
Habit: massive, granular to fibrous
Colour: brown
Fluorescence: none
Description: Cryptomelane is a constituent of the brownish coloured manganese oxides in the outer zones of some manganese pods at Merehead.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner, R.W., (2006) A Mechanism for the formation of the Mineralised Mn Deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine vol. 70, no. 6, pp 629 - 653
Cuprite
Formula: Cu2O
Habit: massive
Colour: red
Fluorescence: none
Description: An old specimen in the NHM collections contains a small amount of cuprite, associated with native copper.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46;
Datolite
Formula: CaB(SiO4)(OH)
Habit: Massive, botryoidal, fibrous
Colour: creamy white to white
Fluorescence: None
Description: A small number of specimens were recovered in the early 1970's. Datolite is associated with the hydrothermal quartz veins at Merehead, not the manganese deposits.
Reference: Symes, R.F. (1977) Datolite and apophyllite from the Mendips. Mineralogical Magazine: 41 (319): 410-411.; Turner, R.W. (2006) A mechanism for the formation of the mineralised Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine: 70 (6): 629-653.; Turner, R.W. and Rumsey, M.S. (2010) Mineral relationships in the Mendip Hills. Journal of the Russell Society: 13: 3-46.;
Diaboleite
Formula: Pb2CuCl2(OH)4
Habit: generally either powdery or massive; rarely as crude xls
Colour: royal blue (massive, xls); light greyish blue (powdery)
Fluorescence: none
Description: Primary diaboleite occurs as massive areas or crude xls embedded in mendipite, cerussite, aragonite etc. Diaboleite also results from the decomposition of chloroxiphite, and this secondary material forms a light blue powdery halo around the chloroxiphite xls.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner, R.W., (2006) A Mechanism for the formation of the Mineralised Mn Deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine vol. 70, no. 6, pp 629 - 653
Djurleite
Formula: Cu31S16
Reference: Embrey, P.G. (1978) Fourth supplementary list of British minerals. Mineralogical Magazine, vol. 42, n° 322, 169-177.;
Dolomite
Formula: CaMg(CO3)2
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Duftite
Formula: PbCu(AsO4)(OH)
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Dundasite
Formula: PbAl2(CO3)2(OH)4 · H2O
Habit: fibrous, acicular xls
Colour: greyish-white
Fluorescence: none
Description: Occurs with alumohydrocalcite in a very small number of specimens collected from #2 vein by the late Richard Barstow, probably in the late 1970's. The crystals are very small - <0.5mm
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner R.W. and Rumsey, M.S. (2007) Merehead Mineralogy - an Update. Russell Soc Newsletter, No 50, pp 17-18 (March 2007)
Ferroceladonite
Formula: K(Fe2+,Mg)(Fe3+,Al)(Si4O10)(OH)2
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Fornacite
Formula: Pb2Cu(CrO4)(AsO4)(OH)
Habit: Clusters of curved blades
Colour: greenish honey-yellow
Description: Identified in Nov 2005 by EDX. Crystals are typical curved 'blades' in clusters, normally <50 microns in size.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner, R. (2006): A mechanism for the formation of the mineralized Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine 70, 629-653; Turner R.W. and Rumsey, M.S. (2007) Merehead Mineralogy - an Update. Russell Soc Newsletter, No 50, pp 17-18 (March 2007); UK Journal of Mines and Minerals (2006), no. 27, pp 6-7.
Galena
Formula: PbS
Habit: massive to poorly crystalline
Colour: steel grey
Fluorescence: none
Description: Galena is generally absent at Merehead, having been replaced by Pb secondary minerals associated with the manganese pods.
Reference: Turner, R.W., (2006) A Mechanism for the formation of the Mineralised Mn Deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine vol. 70, no. 6, pp 629 - 653
Goethite
Formula: α-Fe3+O(OH)
Habit: botryoidal
Reference: Symes, R.F. (1977) Datolite and apophyllite from the Mendips. Mineralogical Magazine: 41 (319): 410-411.
Hausmannite
Formula: Mn2+Mn3+2O4
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Hedyphane
Formula: Ca2Pb3(AsO4)3Cl
Description: A small number of specimens comprised of pale yellow to clear hexagonal prisms were found to be hedyphane, rather than mimetite.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Hematite
Formula: Fe2O3
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Hydrocerussite
Formula: Pb3(CO3)2(OH)2
Habit: pseudo-hexagonal xls and plates, often stacked into 'worms'
Colour: pearly white, pale green
Fluorescence: none
Description: Hydrocerussite is associated with cerussite in the manganese pods; crystals of hydrocerussite coated with cerussite or calcite are not uncommon. Large crystal masses are often found just outside the manganese pod in the altered limestone wallrock, as pCO2 needs to be high for hydrocerussite to form. 'Hydrocerussite' has recently been found to be a mixture of at least three, possibly four different phases (see Turner and Rumsey 2010). Two of these predominate in the Mendips. These various phases need further investigation, and proper characterisation.
Reference: Alabaster, C.J. (1977) An occurrence of brucite at Merehead Quarry, Cranmore, Somerset. Mineralogical Magazine: 41(319): 406-408.; Symes, R.F. (1977) Datolite and apophyllite from the Mendips. Mineralogical Magazine: 41 (319): 410-411. Jambor, J.L., Pertsev, N.N., and Roberts, A.C. (1999) New mineral names. American Mineralogist: 84: 1195-1198.; Turner, R.W. (2006) A mechanism for the formation of the mineralised Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine: 70(6): 629-653.; Turner, R.W. and Rumsey, M.S. (2010) Mineral relationships in the Mendip Hills. Journal of the Russell Society: 13: 3-46.
Hydromagnesite
Formula: Mg5(CO3)4(OH)2 · 4H2O
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Mineralogical Magazine 1977 41 : 406-408.
'Iron oxide'
Reference: Jambor, J.L., Pertsev, N.N., and Roberts, A.C. (1999) New mineral names. American Mineralogist: 84: 1195-1198.
Kentrolite
Formula: Pb2Mn3+2(Si2O7)O2
Habit: Blades and plates in matrix; sometimes as equant to elongated bladed xls in cavities.
Colour: black with a reddish internal tint; sometimes dark brown
Fluorescence: none
Description: Recently (October 2006) identified from manganese pods found on benches F and G at the southwestern end of the quarry. Locally present in some quantity, with exceptional xls up to 5mm in length.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner, R. (2006): A mechanism for the formation of the mineralized Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine 70, 629-653; Turner R.W. and Rumsey, M.S. (2007) Merehead Mineralogy - an Update. Russell Soc Newsletter, No 50, pp 17-18 (March 2007);
Laurionite
Formula: PbCl(OH)
Description: Occurs very sparingly, generally as clear to white grains in (white) mendipite. Laurionite may be more common than realised, as it is very unobtrusive in this environment.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Lepidocrocite
Formula: γ-Fe3+O(OH)
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Macedonite ?
Formula: PbTiO3
Description: A small number of tiny (<4 micron) balls of a brown Pb-Ti-O phase have been found in a specimen with a mixed Mn-Fe oxide matrix from Merehead. These are almost certainly macedonite, but the small size of the material precludes definitive characterisation. A similar phase on the specimen also contains some Fe, and is likely to be related in some way.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
'Magnesian Limestone'
Reference: Jambor, J.L., Pertsev, N.N., and Roberts, A.C. (1999) New mineral names. American Mineralogist: 84: 1195-1198.
Malachite
Formula: Cu2(CO3)(OH)2
Habit: coatings, small crude xls
Colour: green
Fluorescence: none
Description: Small patches of malachite staining resulting from the oxidation of other Cu minerals are common at Merehead. Well formed xls are uncommon, and small.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46;
'Manganese Oxides'
Reference: Symes, R.F. (1977) Datolite and apophyllite from the Mendips. Mineralogical Magazine: 41 (319): 410-411.; Jambor, J.L., Pertsev, N.N., and Roberts, A.C. (1999) New mineral names. American Mineralogist: 84: 1195-1198.
Manganite
Formula: Mn3+O(OH)
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner, R. (2006): A mechanism for the formation of the mineralized Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine 70, 629-653.
'Manganoan Calcite'
Formula: (Ca,Mn)CO3
Habit: Generally massive, occasionally crude xls and xl masses
Colour: shades of pink
Fluorescence: Red (SW) - often very strong and with marked phosphorescence
Description: A ubiquitous gangue mineral at Merehead. Generally disinteresting to collectors apart from its very strong fluorescence, caused by manganese.
Reference: Turner, R.W., (2006) A Mechanism for the formation of the Mineralised Mn Deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine vol. 70, no. 6, pp 629 - 653
Mattheddleite ?
Formula: Pb5(SiO4)1.5(SO4)1.5(Cl,OH)
Description: A Pb-Si-S phase occurs very rarely at Merehead, forming minute clear hexagonal prisms. This is most likely to be mattheddleite, but there is currently insufficient material for a definitive characterisation.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Melanotekite
Formula: Pb2Fe3+2(Si2O7)O2
Habit: Massive, granular, powdery
Colour: yellowish green, greenish brown
Fluorescence: none
Description: Occurs as an alteration product, due to silicification of the Fe oxides surrounding manganese pods, in a Pb rich environment. See also kentrolite.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner, R. (2006): A mechanism for the formation of the mineralized Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine 70, 629-653; Turner R.W. and Rumsey, M.S. (2007) Merehead Mineralogy - an Update. Russell Soc Newsletter, No 50, pp 17-18 (March 2007);
Mendipite
Formula: Pb3Cl2O2
Habit: massive
Colour: generally dirty white, sometimes pinkish to pinkish-purple
Fluorescence: none
Description: The classic Merehead oxychloride, mendipite was common during the 1970's when #1 vein was being worked. Since about 1980 however, the quantity found has declined and it has not been found since the late 1990's.
Reference: Symes, R.F. (1977) Datolite and apophyllite from the Mendips. Mineralogical Magazine: 41 (319): 410-411.; Jambor, J.L., Pertsev, N.N., and Roberts, A.C. (1999) New mineral names. American Mineralogist: 84: 1195-1198.; Turner, R.W. (2006) A mechanism for the formation of the mineralised Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine: 70(6): 629-653.; Turner, R.W. and Rumsey, M.S. (2010) Mineral relationships in the Mendip Hills. Journal of the Russell Society: 13: 3-46.
Mereheadite (TL)
Formula: Pb47Cl25(OH)13O24(CO3)(BO3)2
Habit: massive; occasionally crude xls but these are very, very rare
Colour: yellow orange to reddish brown
Fluorescence: occasionally yellow-green (SW) but this may be due to impurities
Description: Originally from manganese-rich pods along 'Vein 2' and from loose blocks believed to have been derived from 'Vein 1'. Recently found in manganese pods on benches F and G in 2005 and 2006 respectively.
Reference: Alabaster, C. (1989) The Wesley Mine; a further occurrence of manganese-oxide hosted lead oxychloride minerals in the Bristol District. Journal of the Russell Society: 2(2): 29-47.; Welch, M.D., Criddle, A.J., and Symes, R.F. (1998) Mereheadite, Pb2O(OH)Cl: a new litharge-related oxychloride from Merehead Quarry, Cranmore, Somerset. Mineralogical Magazine: 62: 387-393.; Jambor, J.L., Pertsev, N.N., and Roberts, A.C. (1999) New mineral names. American Mineralogist: 84: 1195-1198.; Turner, R.W. (2005) A new find of lead oxychlorides at Torr Works, Somerset. Russell Society Newsletter: 47 (September 2005).; Turner, R.W. (2006) A mechanism for the formation of the mineralised Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine: 70(6): 629-653.; Krivovichev, S.V., Turner, R.W., Rumsey, M.S., Siidra, O.I., and Kirk, C.A. (2009) The crystal structure and chemistry of mereheadite. Mineralogical Magazine: 73: 75-89.; Turner, R.W. and Rumsey, M.S. (2010) Mineral relationships in the Mendip Hills. Journal of the Russell Society: 13: 3-46.;
Mimetite
Formula: Pb5(AsO4)3Cl
Habit: prismatic xx ranging from long and thin to short 'barrels'
Colour: mostly yellow, also white, brown, beige, greenish yellow, red.
Fluorescence: None
Description: Mimetite from Merehead exhibits a wide range of coloration, from white through yellow, green, beige, and brown to red. Invariably these all have similar chemistry, near to end-member (arsenate) mimetite. Phospate and vanadate are low to absent. Pyromorphite and lorettoite - though listed from Merehead - have not been confirmed. Several specimens so labelled were tested and all proved to be mimetite. Microscopic darker red patches in some orange mimetites found in June 2006 have V > As (approximately 7:5) and these patches are technically vanadinite (q.v.).
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner, R.W., (2006) A Mechanism for the formation of the Mineralised Mn Deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine vol. 70, no. 6, pp 629 - 653
Molybdophyllite ?
Formula: Pb8Mg9[Si10O28(OH)8|O2|(CO3)3] · H2O
Description: A Pb-Mg-Si-O phase occurs at Merehead as small clear grains, and this is most likely to be molybdophyllite. It has been noted by other investigators, but has never been found in enough quantity for a definitive characterisation.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Nasonite
Formula: Pb6Ca4(Si2O7)3Cl2
Habit: massive
Colour: royal blue
Fluorescence: n/a
Description: Small royal blue patches (<2mm) in datolite/apophyllite matrix. Less than five specimens including probe mounts are known. Existing references to the occurrence of ganomalite are incorrect; all the specimens are nasonite (they do not contain manganese).
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner, R. (2006): A mechanism for the formation of the mineralized Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine 70, 629-653; Turner R.W. and Rumsey, M.S. (2007) Merehead Mineralogy - an Update. Russell Soc Newsletter, No 50, pp 17-18 (March 2007);
Paralaurionite
Formula: PbCl(OH)
Habit: massive
Colour: greyish white to transparent
Fluorescence: none
Description: Paralaurionite generally occurs at Merehead as yellow patches to approx 10mm embedded in mendipite. Nearly all of the 'blixite' from Merehead (and the Mendips in general) is really paralaurionite. Paralaurionite also occurs as clear, white, and grey grains and blebs in mendipite and the calcite-cerussite cavity infill in the Mn-oxides. In this form, it is hard to identify, and is probably rather more common than thought.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner, R.W., (2006) A Mechanism for the formation of the Mineralised Mn Deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine vol. 70, no. 6, pp 629-653; Turner, R.W., Siidra, O.I., Rumsey, M.S., Polekhovsky, Y.S., Kretser, Y.L., Krivovichev, S.V., Spratt, J., Stanley, C.J. (2015): Yeomanite, Pb2O(OH)Cl, a new chain-structured Pb oxychloride from Merehead Quarry, Somerset, England. Mineralogical Magazine, 79, 1203-1211.
Parkinsonite (TL)
Formula: Pb7MoO9Cl2
Habit: minute areas of granular material
Colour: red, dark red, black
Fluorescence: none
Description: A very rare minor constituent of the oxychloride suite at Merehead. Only found in #1 vein and always occurs embedded in mendipite.
Reference: Mineralogical Magazine: 58:59-68.; Welch, M.D., Schofield, P.F., Cressey, G., and Stanley, G.J. (1996). Cation ordering in lead-molybdenum-vanadium oxychlorides. American Mineralogist, vol. 81, pp 1350-1359; Welch, M.D. and Lepore, G.O. (2010). The crystal structure of parkinsonite, nominally Pb7MoO9Cl2: a naturally occurring Aurivillius phase. Mineralogical Magazine, 74, 269-275. Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46;
Plattnerite
Formula: PbO2
Description: Most often occurs as a very thin black to reddish film, formed by the alteration of oxychlorides (particularly mendipite) and 'crednerite'. Often found between these minerals and the calcite walls of a pod. The pink colour of some mendipite specimens is due to a Pb oxide, almost certainly plattnerite.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Plumbonacrite (TL)
Formula: Pb5O(OH)2(CO3)3
Habit: Pale yellow, hexagonal bipyramidal crystals.
Colour: pale yellow, white
Description: Although not accepted by the IMA as a valid mineral species, crystals of 'plumbonacrite' to around 2mm, and aggregates of xx to around 5mm have been found at Merehead in association with rickturnerite and mereheadite.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46. ; CNMNC Newsletter No. 14, October 2012, page 1282; Mineralogical Magazine, 76, 1281-1288 [revalidation]
Pyrite
Formula: FeS2
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Pyrolusite
Formula: Mn4+O2
Habit: massive, powdery, xls to ~5mm
Colour: black
Fluorescence: none
Description: One of the major pod-forming Mn-oxides.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner, R.W., (2006) A Mechanism for the formation of the Mineralised Mn Deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine vol. 70, no. 6, pp 629 - 653
Pyromorphite
Formula: Pb5(PO4)3Cl
Description: A considerable number of supposed specimens of 'pyromorhpite' from Merehead were analysed, and invariably proved to be greenish coloured mimetite. Pyromorphite does not occur at this location. Recent work by soil scientists (see references in Turner and Rumsey (2010) have shown that Mn++ destabilises the pyromorphite structure and prevents its formation. This fact almost certainly explains the absence of pyromorphite within the manganese-oxide hosted deposits.
Reference: Turner, R.W., (2006) A Mechanism for the formation of the Mineralised Mn Deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine vol. 70, no. 6, pp 629 - 653; Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Quartz
Formula: SiO2
Habit: massive, crystalline, xls
Colour: generally colourless to white; rarely smoky or amethystine
Fluorescence: none
Description: Quartz is the major mineral in the late stage hydrothermal veins at Merehead. Generally found as massive white vein quartz, but xls do occur from time to time. Most are small (<6mm) but exceptional xls to 4cm were found in April 2002. Amethystine and smoky quartz are rare and when the occur are found in the silicified wallrocks of the hydrothermal veins. The purple colour is presumably due to manganese, and the brown to iron.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner, R.W., (2006) A Mechanism for the formation of the Mineralised Mn Deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine vol. 70, no. 6, pp 629 - 653
Rhodochrosite
Formula: MnCO3
Habit: massive
Colour: pink
Fluorescence: none (if it fluoresces, it's mangano-calcite)
Description: True rhodochrosite is rare at Merehead, and when it does occur is massive and a sickly light-brown colour. Most of the pink carbonate found at Merehead is manganocalcite, and sometimes aragonite.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner, R.W., (2006) A Mechanism for the formation of the Mineralised Mn Deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine vol. 70, no. 6, pp 629 - 653
Rickturnerite (TL)
Formula: Pb7O4[Mg(OH)4](OH)Cl3
Habit: Generally as fibrous aggregates. Occasionally as glassy masses. Rarely as individual acicular crystals.
Colour: White, grey, pale green.
Reference: Mineralogical Magazine, 74, 899-902; Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; M. S. Rumsey, S. V. Krivovichev, O. I. Siidra, C. A. Kirk, C. J. Stanley and J. Spratt (2012): Rickturnerite, Pb7O4[Mg(OH)4](OH)Cl3, a complex new lead oxychloride mineral. Mineralogical Magazine 76, 59-73.
Romanèchite ?
Formula: (Ba,H2O)2(Mn4+,Mn3+)5O10
Description: Romanechite has been reported as occurring at Merehead, but the study of Turner and Rumsey (2010) failed to find any of this mineral. It may well occur, but is currently best regarded as unproven.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner, R. (2006): A mechanism for the formation of the mineralized Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine 70, 629-653.
Rumseyite (TL)
Formula: Pb2OClF
Reference: Turner, R.W., Siidra, O.I., Krivovichev, S.V., Stanley, C.J. and Spratt. J. (2012) Rumseyite, IMA 2011-091. CNMNC Newsletter, 13(6), 808; Turner, R.W.; Siidra, O.I.; Krivovichev, S.V.; Stanley, C.J.; Spratt, J. (2012): Rumseyite, [Pb2OF]Cl, the first naturally occurring fluoroxychloride mineral with the parent crystal structure for layered lead oxychlorides. Mineralogical Magazine 76, 1247-1255.
Sahlinite ?
Formula: Pb14(AsO4)2O9Cl4
Reference: Rumsey, M.S. (2008) The first British occurrence of Kombatite, Pb14(VO4)2O9Cl4, from the "Wesley Mine" near Westbury on Trym, Bristol. Journal of the Russell Society, vol. 11, 51-53.
Saponite
Formula: Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Habit: powdery
Colour: white
Fluorescence: none
Description: Powdery greyish-white material from a pod excavated in June 2006 is a mixture of saponite and magnesian calcite. Occurs with purplish quartz.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner R.W. and Rumsey, M.S. (2007) Merehead Mineralogy - an Update. Russell Soc Newsletter, No 50, pp 17-18 (March 2007)
Sepiolite
Formula: Mg4(Si6O15)(OH)2 · 6H2O
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
'Silica'
Habit: massive, granular to gel like
Colour: white, blue, pink
Fluorescence: n/a
Description: Late stage silica gel is not uncommon at Merehead. It is completely amorphous and often brightly coloured by small amounts of Cu, Fe, or Mn.
Reference: Turner R.W. and Rumsey, M.S. (2007) Merehead Mineralogy - an Update. Russell Soc Newsletter, No 50, pp 17-18 (March 2007)
Somersetite (TL)
Formula: Pb8O2(OH)2(CO3)5
Reference: Siidra, O.I., Nekrasova, D.O., Turner, R., Zaitsev, A.N., Chukanov, N.V., Spratt, J., Polekhovsky, J.S. and Rumsey, M. (2017) Somersetite, IMA 2017-024. CNMNC Newsletter No. 38, August 2017, page 1035; Mineralogical Magazine: 81: 1033–1038; Siidra, O.I., Nekrasova, D.O., Turner, R., Zaitsev, A.N., Chukanov, N.V., Polekhovsky, Y.S., Spratt, J., Rumsey, M.S. (2018) Somersetite, Pb8O(OH)4(CO3)5, a New Complex Hydrocerussite-Related Mineral from the Mendip Hills. Mineralogical Magazine: 82: 1211-1224
Symesite (TL)
Formula: Pb10(SO4)O7Cl4 · H2O
Habit: massive, platy
Colour: white, brown, yellowish, pink
Fluorescence: none
Description: Originally found as pink platy material from #2 vein, recent finds (2005-6) have yielded specimens that are clear, white, grey, bluish, yellow and brown in colour. Recent specimens are associated with mereheadite, to which it is related.
Reference: Amer.Min.(2000) 85, 1526-1533; Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner, R.W., (2006) A Mechanism for the formation of the Mineralised Mn Deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine vol. 70, no. 6, pp 629 - 653
Vanadinite
Formula: Pb5(VO4)3Cl
Habit: None
Colour: dark orange-red
Fluorescence: None
Description: Some small, darker patches in orange mimetite collected in June 2006 have V > As (approx 7:5) and therefore technically are vanadinite. However, the bulk crystal composition is that of a marginally V-enriched mimetite, and no distinct vanadinite crystals have been found to date.
Reference: Turner, R. (2006): A mechanism for the formation of the mineralized Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine 70, 629-653; Turner R.W. and Rumsey, M.S. (2007) Merehead Mineralogy - an Update. Russell Soc Newsletter, No 50, pp 17-18 (March 2007); Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46;
Vésigniéite
Formula: BaCu3(VO4)2(OH)2
Description: Despite reports, does not occur at Merehead. Specimens have been analysed and found to be weathered chrome yellow paint, presumably from blast hole marking. The material consists predominantly of PbCr04 and fillers uniformly ground to ~1 micron. Traces of Ag, Sn and Ni and a metallic phase composed of EPNS are most likely from the grinding rollers when the paint was prepared.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Rumsey & Turner, Russell Soc Newsletter #51, Sept. 2007; Bull. Br. Mus. Nat. Hist. (Geol.) 40 (5) : 247-258 Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46.
Wulfenite
Formula: Pb(MoO4)
Habit: Tabular blades in matrix to 2cm, free standing xls to 5mm
Colour: honey brown
Description: Most Merehead (and Mendip) wulfenite occurs as honey-yellow blades in a matrix of mixed carbonates (usually calcite and/or cerussite and/or aragonite). Blades are usually <5mm and most are smaller; smaller specimens tend to be more yellow in colour. Larger blades have been known to occur on two occasions. Honey-yellow blades were found in June 2006, up to 25mm in size with one specimen reaching 75mm (but unfortunately, all had been caught by the blast). An old specimen in the NHM collection contains a single, red-brown blade approximately 70mm in size. These are probably the largest UK specimens of wulfenite. Free-standing crystals are very rare and generally very small.
Reference: Turner, R.W. and Rumsey, M.S. (2010): Mineral Relationships in the Mendip Hills. Journal of the Russell Society, vol 13, pp 3-46; Turner, R.W., (2006) A Mechanism for the formation of the Mineralised Mn Deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine vol. 70, no. 6, pp 629 - 653
Yeomanite (TL)
Formula: Pb2O(OH)Cl
Reference: Turner, R.W., Siidra, O.I., Rumsey, M.S., Polekhovsky, Y.S., Krivovichev, S.V., Kretser, Y.L. and Stanley, C.J. (2013) Yeomani t e , IMA 2013-024. CNMNC Newsletter No. 16, August 2013, page 2706; Mineralogical Magazine, 77, 2695-2709.;Turner, R.W., Siidra, O.I., Rumsey, M.S., Polekhovsky, Y.S., Kretser, Y.L., Krivovichev, S.V., Spratt, J., Stanley, C.J. (2015): Yeomanite, Pb2O(OH)Cl, a new chain-structured Pb oxychloride from Merehead Quarry, Somerset, England. Mineralogical Magazine, 79, 1203-1211

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
'Copper'1.AA.05Cu
Group 2 - Sulphides and Sulfosalts
'Chalcopyrite'2.CB.10aCuFeS2
'Djurleite'2.BA.05Cu31S16
'Galena'2.CD.10PbS
'Pyrite'2.EB.05aFeS2
Group 3 - Halides
'Blixite' ?3.DC.50Pb2(O,OH)2Cl
'Chloroxiphite'3.DB.30Pb3CuO2Cl2(OH)2
'Cotunnite'3.DC.85PbCl2
'Diaboleite'3.DB.05Pb2CuCl2(OH)4
'Laurionite'3.DC.05PbCl(OH)
'Mendipite'3.DC.70Pb3Cl2O2
'Mereheadite' (TL)3.DC.45Pb47Cl25(OH)13O24(CO3)(BO3)2
'Paralaurionite'3.DC.05PbCl(OH)
'Parkinsonite' (TL)3.DB.40Pb7MoO9Cl2
'Rickturnerite' (TL)3.DB.Pb7O4[Mg(OH)4](OH)Cl3
'Symesite' (TL)3.DC.60Pb10(SO4)O7Cl4 · H2O
Group 4 - Oxides and Hydroxides
'Brucite'4.FE.05Mg(OH)2
'Cesàrolite'4.FG.10Pb(Mn4+)3O6(OH)2
'Coronadite'4.DK.05aPb(Mn4+6Mn3+2)O16
'Crednerite'4.AB.05CuMnO2
'Cryptomelane'4.DK.05aK(Mn4+7Mn3+)O16
'Cuprite'4.AA.10Cu2O
'Goethite'4.00.α-Fe3+O(OH)
'Hausmannite'4.BB.10Mn2+Mn3+2O4
'Hematite'4.CB.05Fe2O3
'Lepidocrocite'4.FE.15γ-Fe3+O(OH)
'Macedonite' ?4.CC.35PbTiO3
'Manganite'4.FD.15Mn3+O(OH)
'Plattnerite'4.DB.05PbO2
'Pyrolusite'4.DB.05Mn4+O2
'Quartz'4.DA.05SiO2
'Romanèchite' ?4.DK.10(Ba,H2O)2(Mn4+,Mn3+)5O10
Group 5 - Nitrates and Carbonates
'Alumohydrocalcite'5.DB.05CaAl2(CO3)2(OH)4 · 4H2O
'Ankerite'5.AB.10Ca(Fe2+,Mg)(CO3)2
'Aragonite'5.AB.15CaCO3
'Azurite'5.BA.05Cu3(CO3)2(OH)2
'Calcite'5.AB.05CaCO3
'Cerussite'5.AB.15PbCO3
'Dolomite'5.AB.10CaMg(CO3)2
'Dundasite'5.DB.10PbAl2(CO3)2(OH)4 · H2O
'Hydrocerussite'5.BE.10Pb3(CO3)2(OH)2
'Hydromagnesite'5.DA.05Mg5(CO3)4(OH)2 · 4H2O
'Malachite'5.BA.10Cu2(CO3)(OH)2
'Plumbonacrite' (TL)5.BE.15Pb5O(OH)2(CO3)3
'Rhodochrosite'5.AB.05MnCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
'Baryte'7.AD.35BaSO4
'Fornacite'7.FC.10Pb2Cu(CrO4)(AsO4)(OH)
'Wulfenite'7.GA.05Pb(MoO4)
Group 8 - Phosphates, Arsenates and Vanadates
'Duftite'8.BH.35PbCu(AsO4)(OH)
'Hedyphane'8.BN.05Ca2Pb3(AsO4)3Cl
'Mimetite'8.BN.05Pb5(AsO4)3Cl
'Pyromorphite' ?8.BN.05Pb5(PO4)3Cl
'Sahlinite' ?8.BO.20Pb14(AsO4)2O9Cl4
'Vanadinite'8.BN.05Pb5(VO4)3Cl
'Vésigniéite' ?8.BH.45BaCu3(VO4)2(OH)2
Group 9 - Silicates
'Allophane'9.ED.20(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
'Ardennite-(As)' ?9.BJ.40Mn2+4Al4(AlMg)(AsO4)(SiO4)2(Si3O10)(OH)6
'Chrysocolla'9.ED.20Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
'Datolite'9.AJ.20CaB(SiO4)(OH)
'Ferroceladonite'9.EC.15K(Fe2+,Mg)(Fe3+,Al)(Si4O10)(OH)2
'Kentrolite'9.BE.80Pb2Mn3+2(Si2O7)O2
'Mattheddleite' ?9.AH.25Pb5(SiO4)1.5(SO4)1.5(Cl,OH)
'Melanotekite'9.BE.80Pb2Fe3+2(Si2O7)O2
'Molybdophyllite' ?9.HH.25Pb8Mg9[Si10O28(OH)8|O2|(CO3)3] · H2O
'Nasonite'9.BE.77Pb6Ca4(Si2O7)3Cl2
'Saponite'9.EC.45Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
'Sepiolite'9.EE.25Mg4(Si6O15)(OH)2 · 6H2O
Unclassified Minerals, Rocks, etc.
'Apatite'-
'var: Collophane'-
'Apophyllite'-
'Iron oxide'-
'Magnesian Limestone'-
'Manganese Oxides'-
'Manganoan Calcite'-(Ca,Mn)CO3
'Rumseyite' (TL)-Pb2OClF
'Silica'-
'Somersetite' (TL)-Pb8O2(OH)2(CO3)5
'Yeomanite' (TL)-Pb2O(OH)Cl

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Djurleite2.4.7.2Cu31S16
AmXp, with m:p = 1:1
Galena2.8.1.1PbS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 1:2
Pyrite2.12.1.1FeS2
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
A2X3
Hematite4.3.1.2Fe2O3
Macedonite ?4.3.6.1PbTiO3
AX2
Plattnerite4.4.1.6PbO2
Pyrolusite4.4.1.4Mn4+O2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Lepidocrocite6.1.2.2γ-Fe3+O(OH)
Manganite6.1.3.1Mn3+O(OH)
X(OH)2
Brucite6.2.1.1Mg(OH)2
Group 7 - MULTIPLE OXIDES
ABX2
Crednerite7.1.2.1CuMnO2
AB2X4
Hausmannite7.2.7.1Mn2+Mn3+2O4
(AB)5X8
Cesàrolite7.6.1.1Pb(Mn4+)3O6(OH)2
AB8X16
Coronadite7.9.1.4Pb(Mn4+6Mn3+2)O16
Cryptomelane7.9.1.2K(Mn4+7Mn3+)O16
Romanèchite ?7.9.2.1(Ba,H2O)2(Mn4+,Mn3+)5O10
Group 9 - NORMAL HALIDES
AX2
Cotunnite9.2.7.1PbCl2
Group 10 - OXYHALIDES AND HYDROXYHALIDES
A(O,OH)Xq
Blixite ?10.2.4.1Pb2(O,OH)2Cl
Laurionite10.2.2.1PbCl(OH)
Paralaurionite10.2.3.1PbCl(OH)
A3(O,OH)2Xq
Mendipite10.3.1.1Pb3Cl2O2
Am(O,OH)pXq
Parkinsonite (TL)10.5.11.1Pb7MoO9Cl2
AmBn(O,OH)pXq
Chloroxiphite10.6.4.1Pb3CuO2Cl2(OH)2
Diaboleite10.6.1.1Pb2CuCl2(OH)4
Rickturnerite (TL)10.6.17.Pb7O4[Mg(OH)4](OH)Cl3
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Cerussite14.1.3.4PbCO3
Rhodochrosite14.1.1.4MnCO3
AB(XO3)2
Ankerite14.2.1.2Ca(Fe2+,Mg)(CO3)2
Dolomite14.2.1.1CaMg(CO3)2
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Azurite16a.2.1.1Cu3(CO3)2(OH)2
Hydrocerussite16a.2.2.1Pb3(CO3)2(OH)2
Malachite16a.3.1.1Cu2(CO3)(OH)2
Plumbonacrite (TL)16a.5.1.1Pb5O(OH)2(CO3)3
Group 16b - HYDRATED CARBONATES CONTAINING HYDROXYL OR HALOGEN
Alumohydrocalcite16b.2.3.1CaAl2(CO3)2(OH)4 · 4H2O
Dundasite16b.2.1.1PbAl2(CO3)2(OH)4 · H2O
Hydromagnesite16b.7.1.1Mg5(CO3)4(OH)2 · 4H2O
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Baryte28.3.1.1BaSO4
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)m(XO4)pZq, where m:p > 4:1
Sahlinite ?41.1.4.1Pb14(AsO4)2O9Cl4
(AB)2(XO4)Zq
Duftite41.5.1.4PbCu(AsO4)(OH)
Vésigniéite ?41.5.13.1BaCu3(VO4)2(OH)2
A5(XO4)3Zq
Hedyphane41.8.2.1Ca2Pb3(AsO4)3Cl
Mimetite41.8.4.2Pb5(AsO4)3Cl
Pyromorphite ?41.8.4.1Pb5(PO4)3Cl
Vanadinite41.8.4.3Pb5(VO4)3Cl
Group 43 - COMPOUND PHOSPHATES, ETC.
Anhydrous Compound Phosphates, etc·, Containing Hydroxyl or Halogen
Fornacite43.4.3.2Pb2Cu(CrO4)(AsO4)(OH)
Group 48 - ANHYDROUS MOLYBDATES AND TUNGSTATES
AXO4
Wulfenite48.1.3.1Pb(MoO4)
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] and/or >[6] coordination
Mattheddleite ?52.4.9.6Pb5(SiO4)1.5(SO4)1.5(Cl,OH)
Group 54 - NESOSILICATES Borosilicates and Some Beryllosilicates
Borosilicates and Some Beryllosilicates with B in [4] coordination
Datolite54.2.1a.1CaB(SiO4)(OH)
Group 56 - SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
Si2O7 Groups and O, OH, F, and H2O with cations in [4] and/or >[4] coordination
Kentrolite56.2.10.2Pb2Mn3+2(Si2O7)O2
Melanotekite56.2.10.1Pb2Fe3+2(Si2O7)O2
Nasonite56.2.11.1Pb6Ca4(Si2O7)3Cl2
Group 58 - SOROSILICATES Insular, Mixed, Single, and Larger Tetrahedral Groups
Insular, Mixed, Single, and Larger Tetrahedral Groups with insular single and triple groups (n=1, 3)
Ardennite-(As) ?58.3.1.1Mn2+4Al4(AlMg)(AsO4)(SiO4)2(Si3O10)(OH)6
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
Allophane71.1.5.1(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Sheets of 6-membered rings with 2:1 clays
Saponite71.3.1b.2Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Group 74 - PHYLLOSILICATES Modulated Layers
Modulated Layers with joined strips
Chrysocolla74.3.2.1Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Sepiolite74.3.1b.1Mg4(Si6O15)(OH)2 · 6H2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Group 78 - Unclassified Silicates
Molybdophyllite ?78.5.7.1Pb8Mg9[Si10O28(OH)8|O2|(CO3)3] · H2O
Unclassified Minerals, Rocks, etc.
'Apatite'-
'var: Collophane'-
'Apophyllite'-
Aragonite-CaCO3
Ferroceladonite-K(Fe2+,Mg)(Fe3+,Al)(Si4O10)(OH)2
'Iron oxide'-
'Magnesian Limestone'-
'Manganese Oxides'-
'Manganoan Calcite'-(Ca,Mn)CO3
Mereheadite (TL)-Pb47Cl25(OH)13O24(CO3)(BO3)2
Rumseyite (TL)-Pb2OClF
'Silica'-
Somersetite (TL)-Pb8O2(OH)2(CO3)5
Symesite (TL)-Pb10(SO4)O7Cl4 · H2O
Yeomanite (TL)-Pb2O(OH)Cl

List of minerals for each chemical element

HHydrogen
H Allophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
H AlumohydrocalciteCaAl2(CO3)2(OH)4 · 4H2O
H Ardennite-(As)Mn42+Al4(AlMg)(AsO4)(SiO4)2(Si3O10)(OH)6
H AzuriteCu3(CO3)2(OH)2
H BlixitePb2(O,OH)2Cl
H BruciteMg(OH)2
H CesàrolitePb(Mn4+)3O6(OH)2
H ChloroxiphitePb3CuO2Cl2(OH)2
H ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
H DatoliteCaB(SiO4)(OH)
H DiaboleitePb2CuCl2(OH)4
H DuftitePbCu(AsO4)(OH)
H DundasitePbAl2(CO3)2(OH)4 · H2O
H FerroceladoniteK(Fe2+,Mg)(Fe3+,Al)(Si4O10)(OH)2
H FornacitePb2Cu(CrO4)(AsO4)(OH)
H Goethiteα-Fe3+O(OH)
H HydrocerussitePb3(CO3)2(OH)2
H HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
H LaurionitePbCl(OH)
H Lepidocrociteγ-Fe3+O(OH)
H MalachiteCu2(CO3)(OH)2
H ManganiteMn3+O(OH)
H MattheddleitePb5(SiO4)1.5(SO4)1.5(Cl,OH)
H MereheaditePb47Cl25(OH)13O24(CO3)(BO3)2
H MolybdophyllitePb8Mg9[Si10O28(OH)8|O2|(CO3)3] · H2O
H ParalaurionitePbCl(OH)
H PlumbonacritePb5O(OH)2(CO3)3
H RickturneritePb7O4[Mg(OH)4](OH)Cl3
H Romanèchite(Ba,H2O)2(Mn4+,Mn3+)5O10
H SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
H SepioliteMg4(Si6O15)(OH)2 · 6H2O
H SomersetitePb8O2(OH)2(CO3)5
H SymesitePb10(SO4)O7Cl4 · H2O
H VésigniéiteBaCu3(VO4)2(OH)2
H YeomanitePb2O(OH)Cl
BBoron
B DatoliteCaB(SiO4)(OH)
B MereheaditePb47Cl25(OH)13O24(CO3)(BO3)2
CCarbon
C AlumohydrocalciteCaAl2(CO3)2(OH)4 · 4H2O
C AnkeriteCa(Fe2+,Mg)(CO3)2
C AragoniteCaCO3
C AzuriteCu3(CO3)2(OH)2
C CalciteCaCO3
C CerussitePbCO3
C DolomiteCaMg(CO3)2
C DundasitePbAl2(CO3)2(OH)4 · H2O
C HydrocerussitePb3(CO3)2(OH)2
C HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
C MalachiteCu2(CO3)(OH)2
C Manganoan Calcite(Ca,Mn)CO3
C MereheaditePb47Cl25(OH)13O24(CO3)(BO3)2
C MolybdophyllitePb8Mg9[Si10O28(OH)8|O2|(CO3)3] · H2O
C PlumbonacritePb5O(OH)2(CO3)3
C RhodochrositeMnCO3
C SomersetitePb8O2(OH)2(CO3)5
OOxygen
O Allophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
O AlumohydrocalciteCaAl2(CO3)2(OH)4 · 4H2O
O AnkeriteCa(Fe2+,Mg)(CO3)2
O AragoniteCaCO3
O Ardennite-(As)Mn42+Al4(AlMg)(AsO4)(SiO4)2(Si3O10)(OH)6
O AzuriteCu3(CO3)2(OH)2
O BaryteBaSO4
O BlixitePb2(O,OH)2Cl
O BruciteMg(OH)2
O CalciteCaCO3
O CerussitePbCO3
O CesàrolitePb(Mn4+)3O6(OH)2
O ChloroxiphitePb3CuO2Cl2(OH)2
O ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
O CoronaditePb(Mn64+Mn23+)O16
O CredneriteCuMnO2
O CryptomelaneK(Mn74+Mn3+)O16
O CupriteCu2O
O DatoliteCaB(SiO4)(OH)
O DiaboleitePb2CuCl2(OH)4
O DolomiteCaMg(CO3)2
O DuftitePbCu(AsO4)(OH)
O DundasitePbAl2(CO3)2(OH)4 · H2O
O FerroceladoniteK(Fe2+,Mg)(Fe3+,Al)(Si4O10)(OH)2
O FornacitePb2Cu(CrO4)(AsO4)(OH)
O Goethiteα-Fe3+O(OH)
O HausmanniteMn2+Mn23+O4
O HedyphaneCa2Pb3(AsO4)3Cl
O HematiteFe2O3
O HydrocerussitePb3(CO3)2(OH)2
O HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
O KentrolitePb2Mn23+(Si2O7)O2
O LaurionitePbCl(OH)
O Lepidocrociteγ-Fe3+O(OH)
O MacedonitePbTiO3
O MalachiteCu2(CO3)(OH)2
O ManganiteMn3+O(OH)
O Manganoan Calcite(Ca,Mn)CO3
O MattheddleitePb5(SiO4)1.5(SO4)1.5(Cl,OH)
O MelanotekitePb2Fe23+(Si2O7)O2
O MendipitePb3Cl2O2
O MereheaditePb47Cl25(OH)13O24(CO3)(BO3)2
O MimetitePb5(AsO4)3Cl
O MolybdophyllitePb8Mg9[Si10O28(OH)8|O2|(CO3)3] · H2O
O NasonitePb6Ca4(Si2O7)3Cl2
O ParalaurionitePbCl(OH)
O ParkinsonitePb7MoO9Cl2
O PlattneritePbO2
O PlumbonacritePb5O(OH)2(CO3)3
O PyrolusiteMn4+O2
O PyromorphitePb5(PO4)3Cl
O QuartzSiO2
O RhodochrositeMnCO3
O RickturneritePb7O4[Mg(OH)4](OH)Cl3
O Romanèchite(Ba,H2O)2(Mn4+,Mn3+)5O10
O RumseyitePb2OClF
O SahlinitePb14(AsO4)2O9Cl4
O SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
O SepioliteMg4(Si6O15)(OH)2 · 6H2O
O SomersetitePb8O2(OH)2(CO3)5
O SymesitePb10(SO4)O7Cl4 · H2O
O VanadinitePb5(VO4)3Cl
O VésigniéiteBaCu3(VO4)2(OH)2
O WulfenitePb(MoO4)
O YeomanitePb2O(OH)Cl
FFluorine
F RumseyitePb2OClF
NaSodium
Na SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
MgMagnesium
Mg AnkeriteCa(Fe2+,Mg)(CO3)2
Mg Ardennite-(As)Mn42+Al4(AlMg)(AsO4)(SiO4)2(Si3O10)(OH)6
Mg BruciteMg(OH)2
Mg DolomiteCaMg(CO3)2
Mg HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
Mg MolybdophyllitePb8Mg9[Si10O28(OH)8|O2|(CO3)3] · H2O
Mg RickturneritePb7O4[Mg(OH)4](OH)Cl3
Mg SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Mg SepioliteMg4(Si6O15)(OH)2 · 6H2O
AlAluminium
Al Allophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Al AlumohydrocalciteCaAl2(CO3)2(OH)4 · 4H2O
Al Ardennite-(As)Mn42+Al4(AlMg)(AsO4)(SiO4)2(Si3O10)(OH)6
Al ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Al DundasitePbAl2(CO3)2(OH)4 · H2O
Al SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
SiSilicon
Si Allophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Si Ardennite-(As)Mn42+Al4(AlMg)(AsO4)(SiO4)2(Si3O10)(OH)6
Si ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Si DatoliteCaB(SiO4)(OH)
Si FerroceladoniteK(Fe2+,Mg)(Fe3+,Al)(Si4O10)(OH)2
Si KentrolitePb2Mn23+(Si2O7)O2
Si MattheddleitePb5(SiO4)1.5(SO4)1.5(Cl,OH)
Si MelanotekitePb2Fe23+(Si2O7)O2
Si MolybdophyllitePb8Mg9[Si10O28(OH)8|O2|(CO3)3] · H2O
Si NasonitePb6Ca4(Si2O7)3Cl2
Si QuartzSiO2
Si SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Si SepioliteMg4(Si6O15)(OH)2 · 6H2O
PPhosphorus
P PyromorphitePb5(PO4)3Cl
SSulfur
S BaryteBaSO4
S ChalcopyriteCuFeS2
S DjurleiteCu31S16
S GalenaPbS
S MattheddleitePb5(SiO4)1.5(SO4)1.5(Cl,OH)
S PyriteFeS2
S SymesitePb10(SO4)O7Cl4 · H2O
ClChlorine
Cl BlixitePb2(O,OH)2Cl
Cl ChloroxiphitePb3CuO2Cl2(OH)2
Cl CotunnitePbCl2
Cl DiaboleitePb2CuCl2(OH)4
Cl HedyphaneCa2Pb3(AsO4)3Cl
Cl LaurionitePbCl(OH)
Cl MattheddleitePb5(SiO4)1.5(SO4)1.5(Cl,OH)
Cl MendipitePb3Cl2O2
Cl MereheaditePb47Cl25(OH)13O24(CO3)(BO3)2
Cl MimetitePb5(AsO4)3Cl
Cl NasonitePb6Ca4(Si2O7)3Cl2
Cl ParalaurionitePbCl(OH)
Cl ParkinsonitePb7MoO9Cl2
Cl PyromorphitePb5(PO4)3Cl
Cl RickturneritePb7O4[Mg(OH)4](OH)Cl3
Cl RumseyitePb2OClF
Cl SahlinitePb14(AsO4)2O9Cl4
Cl SymesitePb10(SO4)O7Cl4 · H2O
Cl VanadinitePb5(VO4)3Cl
Cl YeomanitePb2O(OH)Cl
KPotassium
K CryptomelaneK(Mn74+Mn3+)O16
K FerroceladoniteK(Fe2+,Mg)(Fe3+,Al)(Si4O10)(OH)2
CaCalcium
Ca AlumohydrocalciteCaAl2(CO3)2(OH)4 · 4H2O
Ca AnkeriteCa(Fe2+,Mg)(CO3)2
Ca AragoniteCaCO3
Ca CalciteCaCO3
Ca DatoliteCaB(SiO4)(OH)
Ca DolomiteCaMg(CO3)2
Ca HedyphaneCa2Pb3(AsO4)3Cl
Ca Manganoan Calcite(Ca,Mn)CO3
Ca NasonitePb6Ca4(Si2O7)3Cl2
Ca SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
TiTitanium
Ti MacedonitePbTiO3
VVanadium
V VanadinitePb5(VO4)3Cl
V VésigniéiteBaCu3(VO4)2(OH)2
CrChromium
Cr FornacitePb2Cu(CrO4)(AsO4)(OH)
MnManganese
Mn Ardennite-(As)Mn42+Al4(AlMg)(AsO4)(SiO4)2(Si3O10)(OH)6
Mn CesàrolitePb(Mn4+)3O6(OH)2
Mn CoronaditePb(Mn64+Mn23+)O16
Mn CredneriteCuMnO2
Mn CryptomelaneK(Mn74+Mn3+)O16
Mn HausmanniteMn2+Mn23+O4
Mn KentrolitePb2Mn23+(Si2O7)O2
Mn ManganiteMn3+O(OH)
Mn Manganoan Calcite(Ca,Mn)CO3
Mn PyrolusiteMn4+O2
Mn RhodochrositeMnCO3
Mn Romanèchite(Ba,H2O)2(Mn4+,Mn3+)5O10
FeIron
Fe AnkeriteCa(Fe2+,Mg)(CO3)2
Fe ChalcopyriteCuFeS2
Fe FerroceladoniteK(Fe2+,Mg)(Fe3+,Al)(Si4O10)(OH)2
Fe Goethiteα-Fe3+O(OH)
Fe HematiteFe2O3
Fe Lepidocrociteγ-Fe3+O(OH)
Fe MelanotekitePb2Fe23+(Si2O7)O2
Fe PyriteFeS2
Fe SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
CuCopper
Cu AzuriteCu3(CO3)2(OH)2
Cu ChalcopyriteCuFeS2
Cu ChloroxiphitePb3CuO2Cl2(OH)2
Cu ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Cu CopperCu
Cu CredneriteCuMnO2
Cu CupriteCu2O
Cu DiaboleitePb2CuCl2(OH)4
Cu DjurleiteCu31S16
Cu DuftitePbCu(AsO4)(OH)
Cu FornacitePb2Cu(CrO4)(AsO4)(OH)
Cu MalachiteCu2(CO3)(OH)2
Cu VésigniéiteBaCu3(VO4)2(OH)2
AsArsenic
As Ardennite-(As)Mn42+Al4(AlMg)(AsO4)(SiO4)2(Si3O10)(OH)6
As DuftitePbCu(AsO4)(OH)
As FornacitePb2Cu(CrO4)(AsO4)(OH)
As HedyphaneCa2Pb3(AsO4)3Cl
As MimetitePb5(AsO4)3Cl
As SahlinitePb14(AsO4)2O9Cl4
MoMolybdenum
Mo ParkinsonitePb7MoO9Cl2
Mo WulfenitePb(MoO4)
BaBarium
Ba BaryteBaSO4
Ba Romanèchite(Ba,H2O)2(Mn4+,Mn3+)5O10
Ba VésigniéiteBaCu3(VO4)2(OH)2
PbLead
Pb BlixitePb2(O,OH)2Cl
Pb CerussitePbCO3
Pb CesàrolitePb(Mn4+)3O6(OH)2
Pb ChloroxiphitePb3CuO2Cl2(OH)2
Pb CoronaditePb(Mn64+Mn23+)O16
Pb CotunnitePbCl2
Pb DiaboleitePb2CuCl2(OH)4
Pb DuftitePbCu(AsO4)(OH)
Pb DundasitePbAl2(CO3)2(OH)4 · H2O
Pb FornacitePb2Cu(CrO4)(AsO4)(OH)
Pb GalenaPbS
Pb HedyphaneCa2Pb3(AsO4)3Cl
Pb HydrocerussitePb3(CO3)2(OH)2
Pb KentrolitePb2Mn23+(Si2O7)O2
Pb LaurionitePbCl(OH)
Pb MacedonitePbTiO3
Pb MattheddleitePb5(SiO4)1.5(SO4)1.5(Cl,OH)
Pb MelanotekitePb2Fe23+(Si2O7)O2
Pb MendipitePb3Cl2O2
Pb MereheaditePb47Cl25(OH)13O24(CO3)(BO3)2
Pb MimetitePb5(AsO4)3Cl
Pb MolybdophyllitePb8Mg9[Si10O28(OH)8|O2|(CO3)3] · H2O
Pb NasonitePb6Ca4(Si2O7)3Cl2
Pb ParalaurionitePbCl(OH)
Pb ParkinsonitePb7MoO9Cl2
Pb PlattneritePbO2
Pb PlumbonacritePb5O(OH)2(CO3)3
Pb PyromorphitePb5(PO4)3Cl
Pb RickturneritePb7O4[Mg(OH)4](OH)Cl3
Pb RumseyitePb2OClF
Pb SahlinitePb14(AsO4)2O9Cl4
Pb SomersetitePb8O2(OH)2(CO3)5
Pb SymesitePb10(SO4)O7Cl4 · H2O
Pb VanadinitePb5(VO4)3Cl
Pb WulfenitePb(MoO4)
Pb YeomanitePb2O(OH)Cl

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Late Cretaceous
66 - 100.5 Ma



ID: 3191056
Mesozoic sedimentary rocks

Age: Late Cretaceous (66 - 100.5 Ma)

Lithology: Sedimentary rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Early Jurassic
174.1 - 201.3 Ma



ID: 3134008
Early Jurassic claystone

Age: Early Jurassic (174.1 - 201.3 Ma)

Lithology: Claystone

Reference: Asch, K. The 1:5M International Geological Map of Europe and Adjacent Areas: Development and Implementation of a GIS-enabled Concept. Geologisches Jahrbuch, SA 3. [147]

Mississippian
323.2 - 358.9 Ma



ID: 2035729
Dinantian Rocks (Undifferentiated)

Age: Mississippian (323.2 - 358.9 Ma)

Lithology: Limestone with subordinate sandstone and argillaceous rocks

Reference: British Geological Survey. DiGMapGB-625. British Geological Survey ©NERC. [23]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Symes, R.F. (1977) Datolite and apophyllite from the Mendips. Mineralogical Magazine: 41 (319): 410-411.
Symes, R.F., Cressey, G., Griddle, A.J., Stanley, C.J., Francis, J.G., and Jones, G.C. (1994) Parkinsonite, (Pb,Mo,□)8O8Cl2, a new mineral from Merehead Quarry, Somerset. Mineralogical Magazine: 58 (390): 59-68.
Turner, R. (2006) A mechanism for the formation of the mineralized Mn deposits at Merehead Quarry, Cranmore, Somerset, England. Mineralogical Magazine: 70: 629-653.
Turner, R.W. and Rumsey, M.S. (2010) Mineral relationships in the Mendip Hills. Journal of the Russell Society: 13: 3-46.
Rumsey, M.S., Krivovichev, S.V., Siidra, O.I., Kirk, C.A., Stanley, C.J., and Spratt, J. (2012) Rickturnerite, Pb7O4[Mg(OH)4](OH)Cl3, a complex new lead oxychloride mineral. Mineralogical Magazine: 76: 59-73.
Turner, R.W., Siidra, O.I., Krivovichev, S.V., Stanley, C.J., and Spratt, J. (2012) Rumseyite, [Pb2OF]Cl, the first naturally occurring fluoroxychloride mineral with the parent crystal structure for layered lead oxychlorides. Mineralogical Magazine: 76: 1247-1255.
Turner, R.W., Siidra, O.I., Rumsey, M.S., Polekhovsky, Y.S., Kretser, Y.L., Krivovichev, S.V., Spratt, J., and Stanley, C.J. (2015) Yeomanite, Pb2O(OH)Cl, a new chain-structured Pb oxychloride from Merehead Quarry, Somerset, England. Mineralogical Magazine: 79: 1203-1211.
Siidra, O.I., Nekrasova, D.O., Turner, R., Zaitsev, A.N., Chukanov, N.V., Polekhovsky, Y.S., Spratt, J., Rumsey, M.S. (2018) Somersetite, Pb8O(OH)4(CO3)5, a New Complex Hydrocerussite-Related Mineral from the Mendip Hills. Mineralogical Magazine: 82: 1211-1224


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2018, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: November 15, 2018 19:04:08 Page generated: November 15, 2018 07:28:38
Go to top of page