Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Cerro de Pasco, Pasco province, Pasco, Perui
Regional Level Types
Cerro de PascoMountain
Pasco provinceProvince
PascoDepartment
PeruCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Latitude & Longitude (WGS84):
10° South , 76° West (est.)
Estimate based on other nearby localities or region boundaries.
Margin of Error:
~64km
Locality type:
Köppen climate type:


Large Zn-​Pb(-​Ag-​Bi-​Cu) deposit.

Since the discovery of silver in Cerro de Pasco in 1630, the Spanish mined the rich Cerro de Pasco silver-bearing oxide ore deposits since colonial times. Sulfide minerals are more common in the Atacocha district.
The area is still an active mining center.

Regions containing this locality

Pacific OceanOcean
South America PlateTectonic Plate
South AmericaContinent

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List

Mineral list contains entries from the region specified including sub-localities

70 valid minerals. 1 (TL) - type locality of valid minerals. 1 (FRL) - first recorded locality of unapproved mineral/variety/etc.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Rock list contains entries from the region specified including sub-localities

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Alabandite
Formula: MnS
Reference: Min.Rec. 28, no.4 (1997)
Alunite
Formula: KAl3(SO4)2(OH)6
Reference: Graton, L. C.; Bowditch, Samuel I. (1936): Alkaline and acid solutions in hypogene zoning at Cerro de Pasco. Economic Geology 31, 651-698.
Anglesite
Formula: PbSO4
'Arsenic Sulphide Glass No. 2'
Habit: Botryoidal masses
Colour: black with bright red internal reflections
Fluorescence: none
Description: Botryoidal masses often connected by laths of Dimorphite
Reference: P. Ramdohr, Ore Mineralogy, 3rd ed. pg 890.
Arsenopyrite
Formula: FeAsS
Reference: Min.Rec. 28, no.4 (1997)
Azurite
Formula: Cu3(CO3)2(OH)2
Reference: Ascencios, C. (1966). The San Alberto Lead-Zinc Ore Body at Cerro de Pasco Mine, Cerro de Pasco, Peru. MS thesis University of Arizona.
Baryte
Formula: BaSO4
Bismuthinite
Formula: Bi2S3
Reference: P Ramdohr, Ore Mineralogy, 3rd ed., pg 1130
Bornite
Formula: Cu5FeS4
Reference: P Ramdohr, Ore Mineralogy, 3rd ed., pg 1130
Bournonite
Formula: PbCuSbS3
'Bravoite'
Formula: (Fe,Ni)S2
Reference: Hewett, D. F. (1910) Vanadium Deposits in Peru. Transactions of the American Institute of Mining, Metallurgical Engineering 40:274-299
'Calamine'
Reference: Ascencios, C. (1966). The San Alberto Lead-Zinc Ore Body at Cerro de Pasco Mine, Cerro de Pasco, Peru. MS thesis University of Arizona.
Calcite
Formula: CaCO3
Localities: Reported from at least 7 localities in this region.
Caledonite
Formula: Pb5Cu2(SO4)3(CO3)(OH)6
Reference: Sangameshwar, S. R., & Barnes, H. L. (1983). Supergene processes in zinc-lead-silver sulfide ores in carbonates. Economic Geology, 78(7), 1379-1397.
Cerussite
Formula: PbCO3
Chalcanthite
Formula: CuSO4 · 5H2O
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 437,515.
Chalcocite
Formula: Cu2S
Reference: Ascencios, C. (1966). The San Alberto Lead-Zinc Ore Body at Cerro de Pasco Mine, Cerro de Pasco, Peru. MS thesis University of Arizona.
Chalcopyrite
Formula: CuFeS2
'Chlorite Group'
Reference: Graton, L. C.; Bowditch, Samuel I. (1936): Alkaline and acid solutions in hypogene zoning at Cerro de Pasco. Economic Geology 31, 651-698.; Ascencios, C. (1966). The San Alberto Lead-Zinc Ore Body at Cerro de Pasco Mine, Cerro de Pasco, Peru. MS thesis University of Arizona.
Copper
Formula: Cu
Reference: Ascencios, C. (1966). The San Alberto Lead-Zinc Ore Body at Cerro de Pasco Mine, Cerro de Pasco, Peru. MS thesis University of Arizona.
Covellite
Formula: CuS
Cuprite
Formula: Cu2O
Reference: Ascencios, C. (1966). The San Alberto Lead-Zinc Ore Body at Cerro de Pasco Mine, Cerro de Pasco, Peru. MS thesis University of Arizona.
Dickite
Formula: Al2(Si2O5)(OH)4
Reference: Graton, L. C.; Bowditch, Samuel I. (1936): Alkaline and acid solutions in hypogene zoning at Cerro de Pasco. Economic Geology 31, 651-698.
Dimorphite
Formula: As4S3
Reference: No reference listed
Dolomite
Formula: CaMg(CO3)2
Enargite
Formula: Cu3AsS4
Epidote
Formula: {Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Reference: Graton, L. C.; Bowditch, Samuel I. (1936): Alkaline and acid solutions in hypogene zoning at Cerro de Pasco. Economic Geology 31, 651-698.
Epsomite
Formula: MgSO4 · 7H2O
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 437,515.
Famatinite
Formula: Cu3SbS4
Reference: Graton, L. C.; Bowditch, Samuel I. (1936): Alkaline and acid solutions in hypogene zoning at Cerro de Pasco. Economic Geology 31, 651-698.
Fibroferrite
Formula: Fe3+(SO4)(OH) · 5H2O
Reference: Smuda, Jochen; Dold, Bernhard; Friese, Kurt; Morgenstern, Peter; Glaesser, Walter (2007): Mineralogical and geochemical study of element mobility at the sulfide-​rich Excelsior waste rock dump from the polymetallic Zn-​Pb-​(Ag-​Bi-​Cu) ore deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 92, 97-110.
Fluorite
Formula: CaF2
Galena
Formula: PbS
Goethite
Formula: α-Fe3+O(OH)
Reference: Sangameshwar, S. R., & Barnes, H. L. (1983). Supergene processes in zinc-lead-silver sulfide ores in carbonates. Economic Geology, 78(7), 1379-1397.
Goslarite
Formula: ZnSO4 · 7H2O
Gratonite (TL)
Formula: Pb9As4S15
Habit: Heagonal prisms with rhombohedral terminations
Colour: grey
Fluorescence: none
Description: Found on rotting Marcasite, not many large specimens left
Reference: [Amer.Min.(1939) 24, 136; www.johnbetts-fineminerals.com]
Gypsum
Formula: CaSO4 · 2H2O
Reference: Smuda, Jochen; Dold, Bernhard; Friese, Kurt; Morgenstern, Peter; Glaesser, Walter (2007): Mineralogical and geochemical study of element mobility at the sulfide-​rich Excelsior waste rock dump from the polymetallic Zn-​Pb-​(Ag-​Bi-​Cu) ore deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 92, 97-110.
'Halloysite' ?
Formula: Al2(Si2O5)(OH)4
Reference: Hewett, D. F. (1910) Vanadium Deposits in Peru. Transactions of the American Institute of Mining, Metallurgical Engineering 40:274-299
Hematite
Formula: Fe2O3
Hydrocerussite
Formula: Pb3(CO3)2(OH)2
Reference: Sangameshwar, S. R., & Barnes, H. L. (1983). Supergene processes in zinc-lead-silver sulfide ores in carbonates. Economic Geology, 78(7), 1379-1397.
Hydrozincite
Formula: Zn5(CO3)2(OH)6
Reference: Amstutz, G. C.; Ward, H. J. (1956): Geology and mineralization of the lead deposits of Matagente, Cerro de Pasco. Boletin de la Sociedad Geologica del Peru 30, 13-31.; Sangameshwar, S. R., & Barnes, H. L. (1983). Supergene processes in zinc-lead-silver sulfide ores in carbonates. Economic Geology, 78(7), 1379-1397.
Jamesonite
Formula: Pb4FeSb6S14
Jarosite
Formula: KFe3+ 3(SO4)2(OH)6
Reference: Smuda, Jochen; Dold, Bernhard; Friese, Kurt; Morgenstern, Peter; Glaesser, Walter (2007): Mineralogical and geochemical study of element mobility at the sulfide-​rich Excelsior waste rock dump from the polymetallic Zn-​Pb-​(Ag-​Bi-​Cu) ore deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 92, 97-110.
Kutnohorite
Formula: CaMn2+(CO3)2
Reference: Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.
'Lignite var: Quisqueite'
Reference: Hewett, D. F. (1910) Vanadium Deposits in Peru. Transactions of the American Institute of Mining, Metallurgical Engineering 40:274-299
'Limonite'
Formula: (Fe,O,OH,H2O)
Luzonite
Formula: Cu3AsS4
Magnetite
Formula: Fe2+Fe3+2O4
Malachite
Formula: Cu2(CO3)(OH)2
Reference: Ascencios, C. (1966). The San Alberto Lead-Zinc Ore Body at Cerro de Pasco Mine, Cerro de Pasco, Peru. MS thesis University of Arizona.
Mallardite
Formula: MnSO4 · 7H2O
Reference: Smuda, Jochen; Dold, Bernhard; Friese, Kurt; Morgenstern, Peter; Glaesser, Walter (2007): Mineralogical and geochemical study of element mobility at the sulfide-​rich Excelsior waste rock dump from the polymetallic Zn-​Pb-​(Ag-​Bi-​Cu) ore deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 92, 97-110.
Marcasite
Formula: FeS2
Melanterite
Formula: Fe2+(H2O)6SO4 · H2O
Reference: Smuda, Jochen; Dold, Bernhard; Friese, Kurt; Morgenstern, Peter; Glaesser, Walter (2007): Mineralogical and geochemical study of element mobility at the sulfide-​rich Excelsior waste rock dump from the polymetallic Zn-​Pb-​(Ag-​Bi-​Cu) ore deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 92, 97-110.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Graton, L. C.; Bowditch, Samuel I. (1936): Alkaline and acid solutions in hypogene zoning at Cerro de Pasco. Economic Geology 31, 651-698.; Ascencios, C. (1966). The San Alberto Lead-Zinc Ore Body at Cerro de Pasco Mine, Cerro de Pasco, Peru. MS thesis University of Arizona.
Orpiment
Formula: As2S3
Patrónite
Formula: VS4
Reference: Hewett, D. F. (1910) Vanadium Deposits in Peru. Transactions of the American Institute of Mining, Metallurgical Engineering 40:274-299
Plumbojarosite
Formula: Pb0.5Fe3+3(SO4)2(OH)6
Reference: Amstutz, G. C.; Ward, H. J. (1956): Geology and mineralization of the lead deposits of Matagente, Cerro de Pasco. Boletin de la Sociedad Geologica del Peru 30, 13-31.
Pyrite
Formula: FeS2
Localities: Reported from at least 8 localities in this region.
Pyrolusite
Formula: Mn4+O2
Reference: P Ramdohr, Ore Mineralogy, 3rd ed., pg 1130
Pyromorphite
Formula: Pb5(PO4)3Cl
Reference: Sangameshwar, S. R., & Barnes, H. L. (1983). Supergene processes in zinc-lead-silver sulfide ores in carbonates. Economic Geology, 78(7), 1379-1397.
Pyrrhotite
Formula: Fe7S8
Reference: Ascencios, C. (1966). The San Alberto Lead-Zinc Ore Body at Cerro de Pasco Mine, Cerro de Pasco, Peru. MS thesis University of Arizona.
Quartz
Formula: SiO2
Localities: Reported from at least 6 localities in this region.
Quartz var: Agate
Reference: Petersen, G.G. (1970) Minería y metalurgía en el antiguo Peru. Arqueologicas, 12 140pp. (Museo Nacional de Antropologia y Arqueologia, Lima)
Quartz var: Amethyst
Formula: SiO2
Reference: Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.
Quartz var: Chalcedony
Formula: SiO2
Reference: Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.
Realgar
Formula: As4S4
'Revoredite' (FRL)
Formula: PbAs4S7
Type Locality:
Habit: Amorphous
Colour: Black
Description: Revoredite is a natural Pb-As-S glass. Not accepted as a proper species; composition near PbAs4S7; a continous series from Pb2As2S7 to As2S3 seems likely.
Reference: Amstutz GC, Ramdohr P, De Las Casas F: Bol.Soc.Geol.Peru (1957) 32, p. 25 Milton C and Ingram B in: Amer.Min.(1959) 44, 1070-1076
Rhodochrosite
Formula: MnCO3
Rhodonite
Formula: Mn2+SiO3
Description: Purchased from The Enchanted Rock Garden in April 2001 at \"Spring Show of the Rockies\" in Denver, Coloado, USA.
Reference: D. Slade collection
Rhomboclase
Formula: (H5O2)Fe3+(SO4)2 · 2H2O
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 437, 515.
Römerite
Formula: Fe2+Fe3+2(SO4)4 · 14H2O
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 437,515.
Rozenite
Formula: FeSO4 · 4H2O
Reference: Smuda, Jochen; Dold, Bernhard; Friese, Kurt; Morgenstern, Peter; Glaesser, Walter (2007): Mineralogical and geochemical study of element mobility at the sulfide-​rich Excelsior waste rock dump from the polymetallic Zn-​Pb-​(Ag-​Bi-​Cu) ore deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 92, 97-110.
Schwertmannite
Formula: Fe3+16(OH,SO4)12-13O16 · 10-12H2O
Reference: Smuda, Jochen; Dold, Bernhard; Friese, Kurt; Morgenstern, Peter; Glaesser, Walter (2007): Mineralogical and geochemical study of element mobility at the sulfide-​rich Excelsior waste rock dump from the polymetallic Zn-​Pb-​(Ag-​Bi-​Cu) ore deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 92, 97-110.
Seligmannite
Formula: PbCuAsS3
Reference: P Ramdohr, Ore Mineralogy, 3rd ed., pg 1130
Siderite
Formula: FeCO3
Silver
Formula: Ag
Reference: Ascencios, C. (1966). The San Alberto Lead-Zinc Ore Body at Cerro de Pasco Mine, Cerro de Pasco, Peru. MS thesis University of Arizona.
Smithsonite
Formula: ZnCO3
Reference: Amstutz, G. C.; Ward, H. J. (1956): Geology and mineralization of the lead deposits of Matagente, Cerro de Pasco. Boletin de la Sociedad Geologica del Peru 30, 13-31.; Sangameshwar, S. R., & Barnes, H. L. (1983). Supergene processes in zinc-lead-silver sulfide ores in carbonates. Economic Geology, 78(7), 1379-1397.
Sphalerite
Formula: ZnS
Starkeyite
Formula: MgSO4 · 4H2O
Reference: Smuda, Jochen; Dold, Bernhard; Friese, Kurt; Morgenstern, Peter; Glaesser, Walter (2007): Mineralogical and geochemical study of element mobility at the sulfide-​rich Excelsior waste rock dump from the polymetallic Zn-​Pb-​(Ag-​Bi-​Cu) ore deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 92, 97-110.
Tennantite
Formula: Cu6[Cu4(Fe,Zn)2]As4S13
Reference: Smuda, Jochen; Dold, Bernhard; Friese, Kurt; Morgenstern, Peter; Glaesser, Walter (2007): Mineralogical and geochemical study of element mobility at the sulfide-​rich Excelsior waste rock dump from the polymetallic Zn-​Pb-​(Ag-​Bi-​Cu) ore deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 92, 97-110.
'Tennantite-Tetrahedrite Series'
Tetrahedrite
Formula: Cu6[Cu4(Fe,Zn)2]Sb4S13
Reference: Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.
Valleriite
Formula: (Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
Reference: De Montreuil, L.A. (1971): Ocurrencia de valleriita an Atacocha, Peru: Boletin de la Sociedad Geologica del Peru, 41, 5–14.
Zunyite
Formula: Al13Si5O20(OH,F)18Cl
Reference: Graton, L. C.; Bowditch, Samuel I. (1936): Alkaline and acid solutions in hypogene zoning at Cerro de Pasco. Economic Geology 31, 651-698.

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Copper1.AA.05Cu
Silver1.AA.05Ag
Group 2 - Sulphides and Sulfosalts
Alabandite2.CD.10MnS
Arsenopyrite2.EB.20FeAsS
Bismuthinite2.DB.05Bi2S3
Bornite2.BA.15Cu5FeS4
Bournonite2.GA.50PbCuSbS3
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Covellite2.CA.05aCuS
Dimorphite2.FA.10As4S3
Enargite2.KA.05Cu3AsS4
Famatinite2.KA.10Cu3SbS4
Galena2.CD.10PbS
Gratonite (TL)2.JB.55Pb9As4S15
Jamesonite2.HB.15Pb4FeSb6S14
Luzonite2.KA.10Cu3AsS4
Marcasite2.EB.10aFeS2
Orpiment2.FA.30As2S3
Patrónite2.EC.10VS4
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe7S8
Realgar2.FA.15aAs4S4
Seligmannite2.GA.50PbCuAsS3
Sphalerite2.CB.05aZnS
Tennantite2.GB.05Cu6[Cu4(Fe,Zn)2]As4S13
Tetrahedrite2.GB.05Cu6[Cu4(Fe,Zn)2]Sb4S13
Valleriite2.FD.30(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
Group 3 - Halides
Fluorite3.AB.25CaF2
Group 4 - Oxides and Hydroxides
Cuprite4.AA.10Cu2O
Goethite4.00.α-Fe3+O(OH)
Hematite4.CB.05Fe2O3
Magnetite4.BB.05Fe2+Fe3+2O4
Pyrolusite4.DB.05Mn4+O2
Quartz4.DA.05SiO2
var: Agate4.DA.05SiO2
var: Amethyst4.DA.05SiO2
var: Chalcedony4.DA.05SiO2
Group 5 - Nitrates and Carbonates
Azurite5.BA.05Cu3(CO3)2(OH)2
Calcite5.AB.05CaCO3
Cerussite5.AB.15PbCO3
Dolomite5.AB.10CaMg(CO3)2
Hydrocerussite5.BE.10Pb3(CO3)2(OH)2
Hydrozincite5.BA.15Zn5(CO3)2(OH)6
Kutnohorite5.AB.10CaMn2+(CO3)2
Malachite5.BA.10Cu2(CO3)(OH)2
Rhodochrosite5.AB.05MnCO3
Siderite5.AB.05FeCO3
Smithsonite5.AB.05ZnCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Alunite7.BC.10KAl3(SO4)2(OH)6
Anglesite7.AD.35PbSO4
Baryte7.AD.35BaSO4
Caledonite7.BC.50Pb5Cu2(SO4)3(CO3)(OH)6
Chalcanthite7.CB.20CuSO4 · 5H2O
Epsomite7.CB.40MgSO4 · 7H2O
Fibroferrite7.DC.15Fe3+(SO4)(OH) · 5H2O
Goslarite7.CB.40ZnSO4 · 7H2O
Gypsum7.CD.40CaSO4 · 2H2O
Jarosite7.BC.10KFe3+ 3(SO4)2(OH)6
Mallardite7.CB.35MnSO4 · 7H2O
Melanterite7.CB.35Fe2+(H2O)6SO4 · H2O
Plumbojarosite7.BC.10Pb0.5Fe3+3(SO4)2(OH)6
Rhomboclase7.CB.55(H5O2)Fe3+(SO4)2 · 2H2O
Rozenite7.CB.15FeSO4 · 4H2O
Römerite7.CB.75Fe2+Fe3+2(SO4)4 · 14H2O
Schwertmannite7.DE.15Fe3+16(OH,SO4)12-13O16 · 10-12H2O
Starkeyite7.CB.15MgSO4 · 4H2O
Group 8 - Phosphates, Arsenates and Vanadates
Pyromorphite8.BN.05Pb5(PO4)3Cl
Group 9 - Silicates
Dickite9.ED.05Al2(Si2O5)(OH)4
Epidote9.BG.05a{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
'Halloysite' ?9.ED.10Al2(Si2O5)(OH)4
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Rhodonite9.DK.05Mn2+SiO3
Zunyite9.BJ.55Al13Si5O20(OH,F)18Cl
Unclassified Minerals, Rocks, etc.
'Arsenic Sulphide Glass No. 2'-
'Bravoite'-(Fe,Ni)S2
'Calamine'-
'Chlorite Group'-
'Lignite
var: Quisqueite'
-
'Limonite'-(Fe,O,OH,H2O)
'Revoredite' (TL)-PbAs4S7
'Tennantite-Tetrahedrite Series'-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Silver1.1.1.2Ag
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Chalcocite2.4.7.1Cu2S
AmBnXp, with (m+n):p = 3:2
Bornite2.5.2.1Cu5FeS4
AmBnXp, with (m+n):p = 4:3
Dimorphite2.6.1.1As4S3
AmXp, with m:p = 1:1
Alabandite2.8.1.4MnS
Covellite2.8.12.1CuS
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe7S8
Realgar2.8.21.1As4S4
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 2:3
Bismuthinite2.11.2.3Bi2S3
Orpiment2.11.1.1As2S3
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Marcasite2.12.2.1FeS2
Pyrite2.12.1.1FeS2
Hydroxysulfides and Hydrated Sulfides
Valleriite2.14.1.1(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
Miscellaneous
Patrónite2.16.21.1VS4
Group 3 - SULFOSALTS
ø = 4
Enargite3.2.1.1Cu3AsS4
Famatinite3.2.2.2Cu3SbS4
Luzonite3.2.2.1Cu3AsS4
3 <ø < 4
Gratonite (TL)3.3.2.1Pb9As4S15
Tennantite3.3.6.2Cu6[Cu4(Fe,Zn)2]As4S13
Tetrahedrite3.3.6.1Cu6[Cu4(Fe,Zn)2]Sb4S13
ø = 3
Bournonite3.4.3.2PbCuSbS3
Seligmannite3.4.3.1PbCuAsS3
2 < ø < 2.49
Jamesonite3.6.7.1Pb4FeSb6S14
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
A2X3
Hematite4.3.1.2Fe2O3
AX2
Pyrolusite4.4.1.4Mn4+O2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Miscellaneous
Schwertmannite6.4.10.1Fe3+16(OH,SO4)12-13O16 · 10-12H2O
Group 7 - MULTIPLE OXIDES
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 9 - NORMAL HALIDES
AX2
Fluorite9.2.1.1CaF2
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Cerussite14.1.3.4PbCO3
Rhodochrosite14.1.1.4MnCO3
Siderite14.1.1.3FeCO3
Smithsonite14.1.1.6ZnCO3
AB(XO3)2
Dolomite14.2.1.1CaMg(CO3)2
Kutnohorite14.2.1.3CaMn2+(CO3)2
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Azurite16a.2.1.1Cu3(CO3)2(OH)2
Hydrocerussite16a.2.2.1Pb3(CO3)2(OH)2
Malachite16a.3.1.1Cu2(CO3)(OH)2
Hydrozincite16a.4.1.1Zn5(CO3)2(OH)6
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Anglesite28.3.1.3PbSO4
Baryte28.3.1.1BaSO4
Group 29 - HYDRATED ACID AND NORMAL SULFATES
Hydrated Acid Sulfates
Rhomboclase29.1.1.1(H5O2)Fe3+(SO4)2 · 2H2O
AXO4·xH2O
Chalcanthite29.6.7.1CuSO4 · 5H2O
Epsomite29.6.11.1MgSO4 · 7H2O
Goslarite29.6.11.2ZnSO4 · 7H2O
Gypsum29.6.3.1CaSO4 · 2H2O
Mallardite29.6.10.5MnSO4 · 7H2O
Melanterite29.6.10.1Fe2+(H2O)6SO4 · H2O
Rozenite29.6.6.1FeSO4 · 4H2O
Starkeyite29.6.6.2MgSO4 · 4H2O
AB2(XO4)4·H2O
Römerite29.7.2.1Fe2+Fe3+2(SO4)4 · 14H2O
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Alunite30.2.4.1KAl3(SO4)2(OH)6
Jarosite30.2.5.1KFe3+ 3(SO4)2(OH)6
Plumbojarosite30.2.5.6Pb0.5Fe3+3(SO4)2(OH)6
Group 31 - HYDRATED SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)(XO4)Zq·xH2O
Fibroferrite31.9.12.1Fe3+(SO4)(OH) · 5H2O
Group 32 - COMPOUND SULFATES
Anhydrous Compound Sulfates containing Hydroxyl or Halogen
Caledonite32.3.2.1Pb5Cu2(SO4)3(CO3)(OH)6
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
A5(XO4)3Zq
Pyromorphite41.8.4.1Pb5(PO4)3Cl
Group 57 - SOROSILICATES Si3O10 Groups and Larger Noncyclic Groups
Insular Si3O10 and Larger Noncyclic Groups with [Si5O16] groups
Zunyite57.3.1.1Al13Si5O20(OH,F)18Cl
Group 58 - SOROSILICATES Insular, Mixed, Single, and Larger Tetrahedral Groups
Insular, Mixed, Single, and Larger Tetrahedral Groups with cations in [6] and higher coordination; single and double groups (n = 1, 2)
Epidote58.2.1a.7{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=5
Rhodonite65.4.1.1Mn2+SiO3
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
Dickite71.1.1.1Al2(Si2O5)(OH)4
'Halloysite' ?71.1.1.4Al2(Si2O5)(OH)4
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Unclassified Minerals, Mixtures, etc.
'Arsenic Sulphide Glass No. 2'-
'Bravoite'-(Fe,Ni)S2
'Calamine'-
'Chlorite Group'-
'Lignite
var: Quisqueite'
-
'Limonite'-(Fe,O,OH,H2O)
Muscovite
var: Sericite
-KAl2(AlSi3O10)(OH)2
Quartz
var: Agate
-SiO2
var: Amethyst-SiO2
var: Chalcedony-SiO2
'Revoredite' (FRL)-PbAs4S7
'Tennantite-Tetrahedrite Series'-

List of minerals for each chemical element

HHydrogen
H Rhomboclase(H5O2)Fe3+(SO4)2 · 2H2O
H EpsomiteMgSO4 · 7H2O
H ChalcanthiteCuSO4 · 5H2O
H GoslariteZnSO4 · 7H2O
H RömeriteFe2+Fe23+(SO4)4 · 14H2O
H Valleriite(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
H SchwertmanniteFe163+(OH,SO4)12-13O16 · 10-12H2O
H FibroferriteFe3+(SO4)(OH) · 5H2O
H MelanteriteFe2+(H2O)6SO4 · H2O
H MallarditeMnSO4 · 7H2O
H StarkeyiteMgSO4 · 4H2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H RozeniteFeSO4 · 4H2O
H JarositeKFe3+ 3(SO4)2(OH)6
H GypsumCaSO4 · 2H2O
H HydrozinciteZn5(CO3)2(OH)6
H Limonite(Fe,O,OH,H2O)
H PlumbojarositePb0.5Fe33+(SO4)2(OH)6
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
H ZunyiteAl13Si5O20(OH,F)18Cl
H Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
H AluniteKAl3(SO4)2(OH)6
H DickiteAl2(Si2O5)(OH)4
H MalachiteCu2(CO3)(OH)2
H AzuriteCu3(CO3)2(OH)2
H HydrocerussitePb3(CO3)2(OH)2
H CaledonitePb5Cu2(SO4)3(CO3)(OH)6
H Goethiteα-Fe3+O(OH)
H HalloysiteAl2(Si2O5)(OH)4
CCarbon
C CalciteCaCO3
C RhodochrositeMnCO3
C KutnohoriteCaMn2+(CO3)2
C SideriteFeCO3
C DolomiteCaMg(CO3)2
C CerussitePbCO3
C SmithsoniteZnCO3
C HydrozinciteZn5(CO3)2(OH)6
C MalachiteCu2(CO3)(OH)2
C AzuriteCu3(CO3)2(OH)2
C HydrocerussitePb3(CO3)2(OH)2
C CaledonitePb5Cu2(SO4)3(CO3)(OH)6
OOxygen
O RhodoniteMn2+SiO3
O QuartzSiO2
O CalciteCaCO3
O RhodochrositeMnCO3
O Rhomboclase(H5O2)Fe3+(SO4)2 · 2H2O
O EpsomiteMgSO4 · 7H2O
O ChalcanthiteCuSO4 · 5H2O
O GoslariteZnSO4 · 7H2O
O RömeriteFe2+Fe23+(SO4)4 · 14H2O
O MagnetiteFe2+Fe23+O4
O PyrolusiteMn4+O2
O KutnohoriteCaMn2+(CO3)2
O Quartz (var: Amethyst)SiO2
O Quartz (var: Chalcedony)SiO2
O SideriteFeCO3
O BaryteBaSO4
O Valleriite(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
O SchwertmanniteFe163+(OH,SO4)12-13O16 · 10-12H2O
O FibroferriteFe3+(SO4)(OH) · 5H2O
O MelanteriteFe2+(H2O)6SO4 · H2O
O MallarditeMnSO4 · 7H2O
O StarkeyiteMgSO4 · 4H2O
O MuscoviteKAl2(AlSi3O10)(OH)2
O RozeniteFeSO4 · 4H2O
O HematiteFe2O3
O JarositeKFe3+ 3(SO4)2(OH)6
O DolomiteCaMg(CO3)2
O GypsumCaSO4 · 2H2O
O CerussitePbCO3
O AnglesitePbSO4
O SmithsoniteZnCO3
O HydrozinciteZn5(CO3)2(OH)6
O Limonite(Fe,O,OH,H2O)
O PlumbojarositePb0.5Fe33+(SO4)2(OH)6
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O ZunyiteAl13Si5O20(OH,F)18Cl
O Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
O AluniteKAl3(SO4)2(OH)6
O DickiteAl2(Si2O5)(OH)4
O MalachiteCu2(CO3)(OH)2
O AzuriteCu3(CO3)2(OH)2
O CupriteCu2O
O HydrocerussitePb3(CO3)2(OH)2
O PyromorphitePb5(PO4)3Cl
O CaledonitePb5Cu2(SO4)3(CO3)(OH)6
O Goethiteα-Fe3+O(OH)
O HalloysiteAl2(Si2O5)(OH)4
FFluorine
F FluoriteCaF2
F ZunyiteAl13Si5O20(OH,F)18Cl
MgMagnesium
Mg EpsomiteMgSO4 · 7H2O
Mg Valleriite(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
Mg StarkeyiteMgSO4 · 4H2O
Mg DolomiteCaMg(CO3)2
AlAluminium
Al Valleriite(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Al ZunyiteAl13Si5O20(OH,F)18Cl
Al Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Al AluniteKAl3(SO4)2(OH)6
Al DickiteAl2(Si2O5)(OH)4
Al HalloysiteAl2(Si2O5)(OH)4
SiSilicon
Si RhodoniteMn2+SiO3
Si QuartzSiO2
Si Quartz (var: Amethyst)SiO2
Si Quartz (var: Chalcedony)SiO2
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Si ZunyiteAl13Si5O20(OH,F)18Cl
Si Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Si DickiteAl2(Si2O5)(OH)4
Si HalloysiteAl2(Si2O5)(OH)4
PPhosphorus
P PyromorphitePb5(PO4)3Cl
SSulfur
S RevoreditePbAs4S7
S GratonitePb9As4S15
S PyriteFeS2
S EnargiteCu3AsS4
S LuzoniteCu3AsS4
S GalenaPbS
S SphaleriteZnS
S AlabanditeMnS
S ArsenopyriteFeAsS
S ChalcopyriteCuFeS2
S JamesonitePb4FeSb6S14
S MarcasiteFeS2
S OrpimentAs2S3
S RealgarAs4S4
S Rhomboclase(H5O2)Fe3+(SO4)2 · 2H2O
S EpsomiteMgSO4 · 7H2O
S ChalcanthiteCuSO4 · 5H2O
S GoslariteZnSO4 · 7H2O
S RömeriteFe2+Fe23+(SO4)4 · 14H2O
S DimorphiteAs4S3
S SeligmannitePbCuAsS3
S BismuthiniteBi2S3
S CovelliteCuS
S BorniteCu5FeS4
S BournonitePbCuSbS3
S TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
S BaryteBaSO4
S Valleriite(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
S PatróniteVS4
S Bravoite(Fe,Ni)S2
S SchwertmanniteFe163+(OH,SO4)12-13O16 · 10-12H2O
S FibroferriteFe3+(SO4)(OH) · 5H2O
S MelanteriteFe2+(H2O)6SO4 · H2O
S MallarditeMnSO4 · 7H2O
S StarkeyiteMgSO4 · 4H2O
S TennantiteCu6[Cu4(Fe,Zn)2]As4S13
S RozeniteFeSO4 · 4H2O
S JarositeKFe3+ 3(SO4)2(OH)6
S GypsumCaSO4 · 2H2O
S AnglesitePbSO4
S PlumbojarositePb0.5Fe33+(SO4)2(OH)6
S FamatiniteCu3SbS4
S AluniteKAl3(SO4)2(OH)6
S ChalcociteCu2S
S PyrrhotiteFe7S8
S CaledonitePb5Cu2(SO4)3(CO3)(OH)6
ClChlorine
Cl ZunyiteAl13Si5O20(OH,F)18Cl
Cl PyromorphitePb5(PO4)3Cl
KPotassium
K MuscoviteKAl2(AlSi3O10)(OH)2
K JarositeKFe3+ 3(SO4)2(OH)6
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
K AluniteKAl3(SO4)2(OH)6
CaCalcium
Ca CalciteCaCO3
Ca FluoriteCaF2
Ca KutnohoriteCaMn2+(CO3)2
Ca DolomiteCaMg(CO3)2
Ca GypsumCaSO4 · 2H2O
Ca Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
VVanadium
V PatróniteVS4
MnManganese
Mn RhodoniteMn2+SiO3
Mn RhodochrositeMnCO3
Mn AlabanditeMnS
Mn PyrolusiteMn4+O2
Mn KutnohoriteCaMn2+(CO3)2
Mn MallarditeMnSO4 · 7H2O
FeIron
Fe PyriteFeS2
Fe ArsenopyriteFeAsS
Fe ChalcopyriteCuFeS2
Fe JamesonitePb4FeSb6S14
Fe MarcasiteFeS2
Fe Rhomboclase(H5O2)Fe3+(SO4)2 · 2H2O
Fe RömeriteFe2+Fe23+(SO4)4 · 14H2O
Fe BorniteCu5FeS4
Fe MagnetiteFe2+Fe23+O4
Fe TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
Fe SideriteFeCO3
Fe Valleriite(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
Fe Bravoite(Fe,Ni)S2
Fe SchwertmanniteFe163+(OH,SO4)12-13O16 · 10-12H2O
Fe FibroferriteFe3+(SO4)(OH) · 5H2O
Fe MelanteriteFe2+(H2O)6SO4 · H2O
Fe RozeniteFeSO4 · 4H2O
Fe HematiteFe2O3
Fe JarositeKFe3+ 3(SO4)2(OH)6
Fe Limonite(Fe,O,OH,H2O)
Fe PlumbojarositePb0.5Fe33+(SO4)2(OH)6
Fe Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Fe PyrrhotiteFe7S8
Fe Goethiteα-Fe3+O(OH)
NiNickel
Ni Bravoite(Fe,Ni)S2
CuCopper
Cu EnargiteCu3AsS4
Cu LuzoniteCu3AsS4
Cu ChalcopyriteCuFeS2
Cu ChalcanthiteCuSO4 · 5H2O
Cu SeligmannitePbCuAsS3
Cu CovelliteCuS
Cu BorniteCu5FeS4
Cu BournonitePbCuSbS3
Cu TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
Cu Valleriite(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
Cu TennantiteCu6[Cu4(Fe,Zn)2]As4S13
Cu FamatiniteCu3SbS4
Cu MalachiteCu2(CO3)(OH)2
Cu AzuriteCu3(CO3)2(OH)2
Cu CupriteCu2O
Cu CopperCu
Cu ChalcociteCu2S
Cu CaledonitePb5Cu2(SO4)3(CO3)(OH)6
ZnZinc
Zn SphaleriteZnS
Zn GoslariteZnSO4 · 7H2O
Zn TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
Zn SmithsoniteZnCO3
Zn HydrozinciteZn5(CO3)2(OH)6
AsArsenic
As RevoreditePbAs4S7
As GratonitePb9As4S15
As EnargiteCu3AsS4
As LuzoniteCu3AsS4
As ArsenopyriteFeAsS
As OrpimentAs2S3
As RealgarAs4S4
As DimorphiteAs4S3
As SeligmannitePbCuAsS3
As TennantiteCu6[Cu4(Fe,Zn)2]As4S13
AgSilver
Ag SilverAg
SbAntimony
Sb JamesonitePb4FeSb6S14
Sb BournonitePbCuSbS3
Sb TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
Sb FamatiniteCu3SbS4
BaBarium
Ba BaryteBaSO4
PbLead
Pb RevoreditePbAs4S7
Pb GratonitePb9As4S15
Pb GalenaPbS
Pb JamesonitePb4FeSb6S14
Pb SeligmannitePbCuAsS3
Pb BournonitePbCuSbS3
Pb CerussitePbCO3
Pb AnglesitePbSO4
Pb PlumbojarositePb0.5Fe33+(SO4)2(OH)6
Pb HydrocerussitePb3(CO3)2(OH)2
Pb PyromorphitePb5(PO4)3Cl
Pb CaledonitePb5Cu2(SO4)3(CO3)(OH)6
BiBismuth
Bi BismuthiniteBi2S3

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Singewald, J. T., Jr.; Miller, B. L. (1916): The Cerro de Pasco District, Peru. Engineering and Mining Journal 101, 1015-8.
Joseph, Werner (1948): The Cerro de Pasco mineral district. Bol. minero soc. nacl. mineria (Chile), No. 580, 470-484.
Ward, H. J. (1961): The Pyrite body and copper ore bodies of Cerro de Pasco mine, central Peru. Economic Geology 56, 402-422.
Baumann, I. H.; Amstutz, G. C. (1965): Natural x-ray amorphous lead-arsenic sulfides from the Cerro de Pasco Mine, Peru. Naturwissenschaften 52, 585-587.
Burkart-Baumann, I.; Ottemann, J.; Amstutz, G.C. (1966): X-ray-amorphous sulfides of Cerro de Pasco, Peru. Neues Jahrbuch für Mineralogie, Monatshefte 1966, 353-361.
Ascencios, C. (1966). The San Alberto Lead-Zinc Ore Body at Cerro de Pasco Mine, Cerro de Pasco, Peru. MS thesis University of Arizona.
Burkart-Baumann, I.; Ottemann, J.; Amstutz, G. C. (1972): X-ray amorphous sulfides from Cerro de Pasco, Peru, and the crystalline inclusions. Neues Jahrbuch für Mineralogie, Monatshefte 1972, 433-446.
Einaudi, Marco T. (1977): Environment of ore deposition at Cerro de Pasco, Peru. Economic Geology 72, 893-924.
Pedroni, G. (1996): Le district minier de Cerro de Pasco - Ande Péruviene. Rivista Mineralogica Italiana (4), 363-371.
Baumgartner, Regina; Fontbote, Lluis; Vennemann, Torsten (2008): Mineral zoning and geochemistry of epithermal polymetallic Zn-​Pb-​Ag-​Cu-​Bi mineralization at Cerro de Pasco, Peru. Economic Geology 103, 493-537.
Bissig, Thomas; Ullrich, Thomas D.; Tosdal, Richard M.; Friedman, Richard; Ebert, Shane (2008): The time-​space distribution of Eocene to Miocene magmatism in the central Peruvian polymetallic province and its metallogenetic implications. Journal of South American Earth Sciences 26, 16-35.
Cooke, Colin A.; Wolfe, Alexander P.; Hobbs, William O. (2009): Lake-​sediment geochemistry reveals 1400 years of evolving extractive metallurgy at Cerro de Pasco, Peruvian Andes. Geology 37, 1019-1022.
Baumgartner, Regina; Fontbote, Lluis; Spikings, Richard; Ovtcharova, Maria; Schaltegger, Urs; Schneider, Jens; Page, Lawrence; Gutjahr, Marcus (2009): Bracketing the age of magmatic-​hydrothermal activity at the Cerro de Pasco epithermal polymetallic deposit, central Peru: a U-​Pb and 40Ar​/39Ar study. Economic Geology 104, 479-504.
Bianchini, F.; Pascali, G.; Campo, A.; Orecchio, S.; Bonsignore, R.; Blandino, P.; Pietrini, P. (2015): Elemental contamination of an open-​pit mining area in the Peruvian Andes. International Journal of Environmental Science and Technology 12(3), 1065-1074.
Rottier, Bertrand; Kouzmanov, Kalin; Bouvier, Anne-Sophie; Baumgartner, Lukas P.; Wälle, Markus; Rezeau, Herve; Bendezú, Ronner; Fontboté, Lluis (2016): Heterogeneous melt and hypersaline liquid inclusions in shallow porphyry type mineralization as markers of the magmatic-​hydrothermal transition (Cerro de Pasco district, Peru). Chemical Geology 447, 93-116.

External Links


Localities in this Region
Show map


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: May 23, 2019 14:20:39 Page generated: May 17, 2019 01:02:18
Go to top of page