Help mindat.org|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportAdd Glossary Item
StatisticsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Anatase

This page kindly sponsored by Robert Rothenberg
Formula:
TiO2
System:
Tetragonal
Colour:
Brown, pale yellow or ...
Lustre:
Adamantine, Metallic
Hardness:
5½ - 6
Name:
Named in 1801 by Rene Just Haüy from the Greek ανάτασις ("anatasis") for "extension," in allusion to the length of the pyramidal faces being longer in relation to their bases than in many tetragonal minerals.
Anatase is one of the five forms of titanium dioxide found in nature.

Visit gemdat.org for gemological information about Anatase.

Classification of Anatase

Approved
4.DD.05

4 : OXIDES (Hydroxides, V[5,6] vanadates, arsenites, antimonites, bismuthites, sulfites, selenites, tellurites, iodates)
D : Metal: Oxygen = 1:2 and similar
D : With medium-sized cations; frameworks of edge-sharing octahedra
Dana 7th ed.:
4.4.4.1
4.4.4.1

4 : SIMPLE OXIDES
4 : AX2
7.9.3

7 : Oxides and Hydroxides
9 : Oxides of Ti
mindat.org URL:
http://www.mindat.org/min-213.html
Please feel free to link to this page.

Type Occurrence of Anatase

Place of Conservation of Type Material:
National History Museum, Paris, France
Year of Discovery:
1801
Geological Setting of Type Material:
Alpine veins, derived from the enclosing gneisses or schists by hydrothermal solutions.

Occurrences of Anatase

Geological Setting:
Usually secondary, derived from other titanium-bearing minerals. In alpine veins, derived from the enclosing gneisses or schists by hydrothermal solutions. In igneous and
metamorphic rocks; in pegmatites; from a carbonatite. A common detrital mineral.

Physical Properties of Anatase

Adamantine, Metallic
Diaphaneity (Transparency):
Transparent, Translucent
Colour:
Brown, pale yellow or reddish brown, indigo, black; pale green, pale lilac, grey, rarely nearly colourless; brown, yellow-brown, pale green, blue in transmitted light.
Comment:
Transparent when light coloured, to nearly opaque when deeply colored. Pyramidal crystals may appear opaque because of total reflection.
Streak:
White to pale yellow
Hardness (Mohs):
5½ - 6
Hardness (Vickers):
VHN100=616 - 698 kg/mm2
Hardness Data:
Measured
Tenacity:
Brittle
Cleavage:
Perfect
on {001} and {011}
Fracture:
Sub-Conchoidal
Density:
3.79 - 3.97 g/cm3 (Measured)    3.89 g/cm3 (Calculated)

Crystallography of Anatase

Crystal System:
Tetragonal
Class (H-M):
4/mmm (4/m 2/m 2/m) - Ditetragonal Dipyramidal
Space Group:
I41/amd
Cell Parameters:
a = 3.7845Å, c = 9.5143Å
Ratio:
a:c = 1 : 2.514
Unit Cell Volume:
V 136.27 ų (Calculated from Unit Cell)
Z:
4
Morphology:
Crystals typically acute dipyramidal {011}, often highly modified; obtuse pyramidal or tabular on {001}; less commonly prismatic on [001], with {110}, {010}

Twinning:
Rare, on {112}

Crystallographic forms of Anatase

Crystal Atlas:
Image Loading
Click on an icon to view
Anatase no.3 - Goldschmidt (1913-1926)
Anatase no.4 - Goldschmidt (1913-1926)
Anatase no.5 - Goldschmidt (1913-1926)
Anatase no.11 - Goldschmidt (1913-1926)
Anatase no.33 - Goldschmidt (1913-1926)
Anatase no.36 - Goldschmidt (1913-1926)
Anatase no.50 - Goldschmidt (1913-1926)
Anatase no.51 - Goldschmidt (1913-1926)
Anatase no.53 - Goldschmidt (1913-1926)
Anatase no.63 - Goldschmidt (1913-1926)
Anatase no.127 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by www.smorf.nl.

Toggle
Edge Lines | Miller Indicies | Axes

Transparency
Opaque | Translucent | Transparent

View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation
X-Ray Powder Diffraction Data:
d-spacingIntensity
3.52 (100)
1.892 (35)
2.378 (20)
1.6999 (20)
1.6665 (20)
1.4808 (14)
2.431 (10)
Comments:
Recorded on synthetic material

Optical Data of Anatase

Type:
Uniaxial (-)
RI values:
nω = 2.561 nε = 2.488
Max Birefringence:
δ = 0.073
Image shows birefringence interference colour range (at 30µm thickness) and does not take into account mineral colouration.
Surface Relief:
Very High
Reflectivity:
400 nmR1=23.7%R2= 23.8%
420 nmR1=22.4%R2= 22.5%
440 nmR1=21.7%R2= 21.6%
460 nmR1=21.1%R2= 21.0%
480 nmR1=20.7%R2= 20.4%
500 nmR1=20.2%R2= 20.0%
520 nmR1=19.9%R2= 19.6%
540 nmR1=19.6%R2= 19.3%
560 nmR1=19.4%R2= 19.0%
580 nmR1=19.2%R2= 18.8%
600 nmR1=19.0%R2= 18.5%
620 nmR1=18.8%R2= 18.4%
640 nmR1=18.7%R2= 18.2%
660 nmR1=18.6%R2= 18.1%
680 nmR1=18.5%R2= 18.0%
700 nmR1=18.4%R2= 17.8%

Reflectance graph
Graph shows reflectance levels at different wavelengths (in nm). Top of box is 100%. Peak reflectance is 23.8%.
R1 shown in black, R2 shown in red
Pleochroism:
Weak
Comments:
stronger in deeply coloured crystals
Comments:
Deeply coloured crystals may be anomalously biaxial

Chemical Properties of Anatase

Formula:
TiO2
Essential elements:
All elements listed in formula:
Analytical Data:
Material from Rio Cipo, Minas Gerais, Brazil
TiO2 (98.98)
Al2O3 (0.15)
Fe2O3 (0.10)
CaO (0.15)

LOI 0.77 wt.-% (loss on ignition)

Sum 100.15 wt.-%
Common Impurities:
Fe,Sn,V,Nb

Relationship of Anatase to other Species

7.9.1HongquiiteTiO
7.9.2RutileTiO2
7.9.4BrookiteTiO2
7.9.5GeikieliteMgTiO3
7.9.6PerovskiteCaTiO3
7.9.7KassiteCaTi2O4(OH)2
7.9.8TausoniteSrTiO3
7.9.9Crichtonite(Sr,La,Ce,Y)(Ti,Fe3+,Mn)21O38
7.9.10Lucasite-(Ce)CeTi2(O,OH)6
7.9.11Hibonite(Ca,Ce)Al12O19
7.9.12Yttrocrasite-(Y)(Y,Th,Ca,U)(Ti,Fe)2(O,OH)6
7.9.13PyrophaniteMn2+TiO3
7.9.14IwakiiteMn2+Fe23+O4
7.9.15IlmeniteFe2+TiO3
7.9.16PseudobrookiteFe2TiO5
7.9.17UlvöspinelFe2TiO4
7.9.18PseudorutileFe2Ti3O9
7.9.19FreudenbergiteNa2(Ti,Fe)8O16
7.9.20KennedyiteMgFe23+Ti3O10
7.9.21Armalcolite(Mg,Fe2+)Ti2O5
7.9.22Högbomite(Mg,Fe)2(Al,Ti)5O10
7.9.23Qandilite(Mg,Fe)2(Ti,Fe,Al)O4
7.9.24Cafetite(Ca,Mg)(Fe,Al)2Ti4O12 · 4H2O
7.9.25Loveringite(Ca,Ce,La)(Zr,Fe)(Mg,Fe)2(Ti,Fe,Cr,Al)18O38
7.9.26Lindsleyite(Ba,Sr)(Zr,Ca)(Fe,Mg)2(Ti,Cr,Fe)18O38
7.9.27PrideriteK(Ti74+Fe3+)O16
7.9.28Jeppeite(K,Ba)2(Ti,Fe)6O13
7.9.29AnkangiteBa(Ti,V3+,Cr)8O16
7.9.30Ecandrewsite(Zn,Fe2+,Mn2+)TiO3
7.9.31LandauiteNaMnZn2(Ti,Fe)6Ti12O38

Other Names for Anatase

Name in Other Languages:
Bosnian (Latin Script):Anatas
Czech:Anatas
Dutch:Anataas
Hungarian:Anatáz
Italian:Anatasio
Japanese:鋭錐石
Lithuanian:Anatazas
Polish:Anataz
Russian:Анатаз
Simplified Chinese:锐铁矿
Swedish:Anatas
Ukrainian:Анатаз

Other Information

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for Anatase

Reference List:
Brooke and Miller (1852): 229.

Brezina (1872), Min. Mitt.: 2: 7.

Palache, C. (1906), Rosenbusch Festschr.: 311.

Palache, C. (1911), American Academy of Arts and Sciences, Proceedings: 47: 125.

Vegard (1916), Phil. Mag.: 32: 65.

Parker (1923), Zs Kr.: 58: 522.

Parker (1923), Zs. Kr.: 59: 1.

Vegard (1926), Phil. Mag.: 1: 1151.

Schröder (1928), Zs. Kr.: 67: 485.

Bader (1934), Schweiz. min. Mitt.: 14: 336.

Palache, Charles, Harry Berman & Clifford Frondel (1944), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Volume I: Elements, Sulfides, Sulfosalts, Oxides. John Wiley and Sons, Inc., New York. 7th edition, revised and enlarged: 583-588.

Journal of the American Chemical Society 77, 4708-4709.

Zeitschrift für Kristallographie 136, 273-281.

Deer, W. A, Howie, R. A. and Zussman, J. (1962): Rock-forming minerals, Vol. 5, Non-Silicates, 40-43.

Gou, B. Z., Liu, Q., Cui, H., Yang, Zhao Y. and Zou, G. (1989): Raman study of anatase (TiO2) at high pressure. High pressure research 1: 185-191.

Howard, C. J., Sabine, T. M. and Dickson, F. (1992): Structural and thermal parameters for rutile and anatase. Acta Crystallographica 47, 462-468.

Anthony, J. W., et al. (1997): Handbook of Mineralogy, Vol. 3, 14.

Hearne, G. R., Zhao, J., Dawe, A. M., Pischedda, V., Maaza, M., Nieuwoudt, M. K., Kibasomba, P., Nemraoui, O. and Comins, J. D. (2004): Effect of grain size on structural transitions in anatase TiO2: A Raman spectroscopy study at high pressure. Physical Reviews B, 70, 134102.

Sekiya, Takao, Takatoshi Yagisawa, Nozomi Kamiya, Deependra Das Mulmi, Susumu Kurita, Yutaka Murakami1 and Tetsuya Kodairal (2004) Defects in Anatase TiO2 Single Crystal Controlled by Heat Treatments. Journal of the Physical Society of Japan: 73, 703-710.

Internet Links for Anatase

Specimens:
The following Anatase specimens are currently listed for sale on minfind.com.

Localities for Anatase

map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2015, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: August 4, 2015 10:52:48 Page generated: August 4, 2015 07:25:20