Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Alban Hills, Metropolitan City of Rome Capital, Lazio, Italyi
Regional Level Types
Alban HillsGroup of Calderas
Metropolitan City of Rome CapitalMetropolitan City
LazioAdministrative Region
Italy- not defined -

This page is currently not sponsored. Click here to sponsor this page.
PhotosSearch
Type:
Group of Calderas
Age:
0.68 Ā± 0.05 to 0.0058 Ā± 0.0001 Ma
Geologic Time:
Dating method:
K-Ar, Ar/Ar
Largest Settlements:
PlacePopulation
Rome2,318,895 (2018)
Velletri48,443 (2015)
Marino38,013 (2015)
Ciampino35,174 (2015)
Albano Laziale26,684 (2015)
Pomezia22,346 (2015)
Mindat Locality ID:
29170
Long-form identifier:
mindat:1:2:29170:2
GUID (UUID V4):
7d4aa127-2375-4a5c-ac3f-7937c0d38993
Other/historical names associated with this locality:
Colli Albani; Colli Albani Volcano; Colli Albani volcanic complex; Alban Hills volcanic complex
Other Languages:
French:
Mont Albain, Ville mƩtropolitaine de Rome Capitale (Province de Rome), Latium, Italie
German:
Colli Albani, Metropolitanstadt Rom Hauptstadt (Provinz Rom), Latium, Italien
Italian:
Colli Albani (Vulcano dei Colli Albani; Complesso vulcanico dei Colli Albani), CittĆ  metropolitana di Roma Capitale (Provincia di Roma), Lazio, Italia
Russian:
ŠŠ»ŃŒŠ±Š°Š½ŃŠŗŠøŠµ Š³Š¾Ń€Ń‹, ŠœŠµŃ‚Ń€Š¾ŠæŠ¾Š»ŠøŠ¹Š½Ń‹Š¹ Š³Š¾Ń€Š¾Š“ Š ŠøŠ¼-стŠ¾Š»ŠøцŠ° (ŠŸŃ€Š¾Š²ŠøŠ½Ń†Šøя Š ŠøŠ¼), Š›Š°Ń†ŠøŠ¾, Š˜Ń‚Š°Š»Šøя
Simplified Chinese:
é˜æēˆ¾ē­å±±, ē¾…馬首都廣域åø‚, ę‹‰é½å„„, ę„å¤§åˆ©
Spanish:
Montes Albanos, Ciudad metropolitana de Roma Capital (Provincia de Roma), Lacio, Italia
Albanian:
Monti Albani, Lacio, Italia
Breton:
MenezioĆ¹ Alban, Lazio, Italia
Bulgarian:
ŠŠ»Š±Š°Š½Šø, Š›Š°Ń†ŠøŠ¾, Š˜Ń‚Š°Š»Šøя
Catalan:
Mont AlbĆ , Ciutat metropolitana de Roma Capital, Laci, ItĆ lia
Cebuano:
Colli Albani, Lacio, Italya
Czech:
AlbanskƩ hory, Lazio, ItƔlie
Danish:
Albanerbjergene, Lazio, Italien
Dutch:
Albaanse Heuvels, Metropolitane stad Rome Hoofdstad, Lazio, Italiƫ
Indonesian:
Colli Albani, Lazio, Italia
Japanese:
ć‚³ćƒƒćƒŖćƒ»ć‚¢ćƒ«ćƒćƒ¼ćƒ‹, ćƒ­ćƒ¼ćƒžēœŒ, ćƒ©ćƒ„ć‚£ć‚Ŗ州, 悤ć‚æćƒŖć‚¢
Macedonian:
ŠŠ»Š±Š°Š½ŃŠŗŠø Š ŠøŠ“Š¾Š²Šø, Š›Š°Ń†ŠøŠ¾, Š˜Ń‚Š°Š»ŠøјŠ°
Norwegian:
Albanerfjellene, Lazio, Italia
Norwegian (Nynorsk):
Albanarfjella, Lazio, Italia
Polish:
GĆ³ry Albańskie, Miasto Stołeczne Rzym, Lacjum, Włochy
Portuguese:
Colinas Albanas, LƔcio, ItƔlia
Serbian:
ŠœŠ¾Š½Ń‚Šø ŠŠ»Š±Š°Š½Šø, Š›Š°Ń†ŠøŠ¾, Š˜Ń‚Š°Š»ŠøјŠ°
Serbo-Croatian:
Colli Albani, Metropolitanski grad Rim, Lacij, Italija
Slovak:
AlbanskƩ vrchy, Lazio, Taliansko
Swedish:
Albanobergen, Lazio, Italien
Turkish:
Alban Tepeleri, Lazio, Ä°talya
Ukrainian:
ŠŠ»ŃŒŠ±Š°Š½ŃŃŒŠŗі Š³Š¾Ń€Šø, Š ŠøŠ¼-Š”тŠ¾Š»Šøця, Š›Š°Ń†Ń–Š¾, Š†Ń‚Š°Š»Ń–я
West Flemish:
Alboanse Euvels, Lazio, Itoaliƫ


The Alban Hills (Colli Albani) are the caldera remains of the quiescent Colli Albani volcanic complex, located 20 km southeast of Rome.

The Colli Albani volcanic complex is a part of the Roman Comagmatic Region (Washington, 1908), also called Latium-Campania Perpotassic Province, which extends along the Tyrrhenian margin of Central Italy. The volcano is composite, containing multiple superposed edifices or lithosomes. This complex, whose activity lasted from ca. 700,000 years ago to Holocene (Giordano et al., 2006; De Benedetti et al., 2008), is constituted by (from bottom to top):

a) the Vulcano Laziale (VL) ignimbrite plateau and caldera complex (ca. 600ā€“350 ka), which is a 1600 km2 plateau of ignimbrites with a central caldera. The last large eruption (> 50 km3 deposits), formed the Villa Senni Eruption Unit (VSEU) ignimbrites at ca. 355 ka. The succession of ignimbrites forms a gently sloping plateau, 2ā€“5Ā° inclined outward from the central caldera. The compound thickness of the succession of ignimbrite outflow sheets can be up to 200 m. The estimated deposit volume for each ignimbrite unit ranges from ca. 10 to 50+ km3. These volumes identify repeated eruptions of VL, which make this volcano one of the most explosive mafic volcanoes. It is therefore probable that the present day central caldera is the result of poly-phased collapses. The lower ignimbrites are poorly exposed mainly in distal areas. They display distinctive and common phreatomagmatic features, such as abundant (>50%) blocky shaped fine- to coarse-ash and ubiquitous presence of accretionary lapilli and have been collectively named "Pisolitic Tuffs succession". The ignimbrites and interlayered deposits that overlie the "Pisolitic tuffs succession" are much better exposed. These ignimbrites have been studied widely studied and include:
- the Pozzolane Rosse, a dark-red, massive and chaotic ignimbrite, generally 10ā€“20 m thick, but up to 80 m thick in paleovalleys. At the base, a scoria lapilli fallout deposit is present, with dispersal axis toward the east. The matrix of the ignimbrite (60ā€“90%) is mostly made of coarse-ash shards, and crystal fragments of leucite, clinopyroxene, and biotite. The framework is largely made by dark, porphyritic and vesicular to poorly vesicular scoria (vesicles < 40%), denser along flattened rims, seldom rounded or with fluidal shapes, up to 30 cm in diametre (up to 30% vol.), and subordinately by xenoliths of lava, thermometamorphosed carbonates from the substrate, and intrusives. Gas-pipes are frequently observed. The composition is tephritic (Trigila, 1995). The ignimbrite is likely related to a caldera collapse. A reliable 39Ar/40Ar age determination is at 457Ā±4 ka (Karner et al.,2001). The ignimbrite is found as far as 30 km from vent beyond hills 400 m high (Giordano & Chiarabba, 1991);
ā€“ the Pozzolane Nere, a dark-grey to black, massive and chaotic ignimbrite generally 1ā€“10 m thick. At the base a stratified scoria lapilli fallout deposit is present, with dispersal axis to the ESE and thicknessof 160 cm at 18 km from caldera centre. The matrix (80ā€“90%) is mostly made of fine-ash shards, and crystal fragments of leucite, clinopyroxene, and biotite. The framework is made by dark-grey, porphyritic and vesicular scoria (vesicles ā‰¤ 50%), seldom rounded or with fluidal shapes, up to 15 cm in diametre (up to 30% vol.), and subordinately by xenoliths of lava, tuffs, and intrusives. The composition is tephri-phonolitic (Trigila, 1995). The ignimbrite is likely related to a caldera collapse. A reliable 39Ar/40Ar age determination is at 407Ā±4 ka (Karner et al.,2001);
- the Villa Senni Eruption Unit (VSEU), which presents at the base cross-stratified, coarse-ash, surge deposit, consistently few centimetres thick over more than 20 km radius from the caldera, overlain by a plane-parallel stratified scoria lapilli fallout deposit, with dispersal axis to the ENE. The fallout deposit is 100 cm thick at the caldera wall and thins to 60 cm at 10 km distance from caldera centre to the E. The fallout deposit is overlain by the Tufo Lionato ignimbrite that is a sillar, lithoidal, and yellow to orange, to brown. The matrix of the ignimbrite (80ā€“90%) is extensively zeolitised into chabazite and phillipsite. Thickness may reach 25 m in paleovalleys, where gas-pipes are frequently observed. The composition varies from K-foiditic to tephri-phonolitic. The Tufo Lionato grades upward into the Pozzolanelle ignimbrite, a distinct depositional unit, but part of the same eruption sequence. The Pozzolanelle is a dark grey to dark red ignimbrite, massive and chaotic, generally 20 m thick and up to 80 m thick in proximal areas. Different from the Tufo Lionato, the Pozzolanelle is non-cemented and preserves its matrix supported texture. The matrix of the ignimbrite (60ā€“90%) is made by coarse-ashs hards, and abundant crystal fragments of leucite (upto 30% of the deposit and up to 2ā€“3 cm in diametre), clinopyroxene, and biotite. The framework is largely made by dark reddish to black, highly porphyritic and vesicular to poorly vesicular scoria (vesicles < 40%), denser along flattened rims, seldom rounded or flattened to spatter, up to 30 cm in diametre (up to 20% vol.), and subordinately by xenoliths of lava, skarn, and intrusives. Gas-pipes are frequently observed at the top. At proximal locations the Pozzolanelle ignimbrite is largely made by the co-ignimbrite breccia facies, constituted by a massive and chaotic, fines poor agglomerate of xenolith blocks up to 2 m in diametre (ca. 30ā€“40% vol., made of lava and tuff, intrusive, skarn, sedimentary clasts in decreasing order of abundance), spatter rags (>10% vol.) and scoria bombs and lapilli (50ā€“60% vol.). Co-ignimbrite breccia lenses are found as far as 10 km from the caldera centre. At several locations, the top of the Pozzolanelle ignimbrite is conformably covered by a succession of decimetre- to metre-thick, planar bedded scoria lapilli beds, that likely are fallout deposits from Plinian to sub-Plinian plumes erupted in the aftermath of the eruption. The composition is tephritic-phonolitic to phonoliticā€“tephritic. The age for the VSEU ignimbrites is indicated at 366Ā±3 ka by Giordano et al. (2006). The VSEU eruption is the last large volume eruption from the Vulcano Laziale edifice. The shape of the present caldera is largely due to this last paroxysmal event.
These major ignimbrites are covered, especially to the E of the caldera, by successions of mainly scoria lapilli fallout beds, more or less pedogenised, by volcaniclastic deposits and at places by lavaflows. These successions have been named respectively the Corcolle succession, which overlies the Pozzolane Rosse ignimbrite, the Centogocce succession, which overlies the Pozzolane Nere ignimbrite, and the Madonna degli Angeli succession, which overlies the VSEU. These deposits are important and record the style of activity after major caldera collapses.

b) the Tuscolano-Artemisio peri-caldera fissure system and the Faete intra-caldera stratovolcano (āˆ¼350ā€“260 ka). Two edifices were built within the Vulcano Laziale (VL) caldera: (1) The horseshoe-shaped Tuscolano-Artemisio (TA) composite edifice (or lithosome) consisting of coalescing, peri-caldera, fissure-related scoriae cones interbedded with lava flows; the fissure system forms two segments controlled by regional fractures; (2) The steep-sided Faete stratovolcano (Maschio delle Faete cone, 949 m a.s.l.) which filled the caldera. The TA and Faete lithosomes partly interfinger. Their products indicate reduced eruption rates relative to the VL period and a change to effusive and mildly explosive eruptions.
In particular, the Tuscolano-Artemisio (TA) composite lithosome is exposed at the continuous and steep ridge, up to 300 m high, that runs along the caldera rim, along two distinct, almost orthogonal segments: the Tuscolano section runs WNWā€“ESE, from Monte Tuscolo to Monte Castellaccio, where the system sharply changes direction to the SW forming the Artemisio segment. The ridge comprises coalescing scoria cones and lava fissures and resembles a large lava and spatter rampart structure. Two succession have identified: the Madonna degli Angeli succession and the Tuscolo succession separated by asignificant unconformity (Giordano et al., 2006).
The Madonna degli Angeli (MDA) succession overlies the paleosoil developed at the top of the VSEU, and therefore represents the rejuvenation of volcanic activity after the VSEU eruption. The succession displays variable thicknesses, ranging from 80 to less than 5 m. It is thicker at the caldera wall and thins laterally. The MDA deposits are distributed unevenly around the caldera, being thicker and much more extensively present eastward from the caldera. At proximal locations, especially along the caldera walls, the MDA succession is made by alternating lava, scoria, and welded scoria fall deposits, that display define local monogenetic Hawaiian to Strombolian centres. These peri-caldera centres are interbedded with beds of well sorted, vesicular scoria lapilli and lithic clasts. Individual beds are up to 1.5 m thick. These scoria beds can be traced outward for tens of kilometres to the east, well over the Apennine mountains with compound dispersal areas, covering more than 600 km2. The available age constrain to the emplacement of the MDA succession is the 39Ar/40Ar age determination at 351Ā±3ka for a lava dyke that cuts the MDA deposits at Monte Castellaccio (Karner et al., 2001).
The Tuscolo (TSC) succession is made by scoria, welded scoria, clastogenic lavas and lava units. The deposits are mostly made by poorly sorted to sorted, poorly stratified to bedded, bomb- to lapilli-size scoria(>90%) with subordinated block and lapilli lava xenoliths. Scoria beds grade, close to vent, from welded scoria to clastogenic lavas. Scoria beds can bereferred to several peri-caldera coalescing scoria, spatter and lava cones, which still preserve their original morphology. The present day morphological relief of the caldera is mostly made by the TA deposits. The TSC fissure-related coalescing centres are still well preserved and cover theerosional unconformity that cuts the MDA succession. The scarce 39Ar/40Ar age determinations on lavas belonging to the TSC succession indicate the emplacement are at ca. 310 ka. The Pantano Borghese member is part of the TSC succession, and is made of lavas, scoria cones, and one maar (the Castiglione maar) issuing from the NWā€“SE Pantano Borghese fissure, located approximately 4 km to the NE of the almost parallel Monte Tuscoloā€“Monte Castellaccio peri-caldera fissure. The Pantano Borghese fissure is more recent than scoria cones and lava flows erupted from the Monte Tuscolo-Monte Castellaccio fissure. The age of the Pantano Borghese member is constrained between ca. 300 and ca. 260 ka.
The Faete lithosome is the product of the main stratocone that rises from the caldera floor at 500 m a.s.l., to the almost 1000 m a.s.l. at its top. The flanks are steep, up to 45Ā° inclined and along the lower reaches there are several eccentric scoria cones. The top of the volcano is truncated by a circular (2Ɨ2 km) depression usually interpreted as a small collapse caldera (De Rita et al., 1988), along the edges of which two scoria cones are located, Monte Cavo and Colle Iano scoria cones. The main stratovolcano is made by the Rocca di Papa succession, mostly made of lava, welded scoria, and scoria fall deposits, indicating an effusive to mild explosive style of activity. The presence of unconformities, paleosoils and volcaniclastic deposits indicate that the stratocone was built during successive phases of activity. Available K/Ar and 39Ar/40Ar age determinations on lava samples from this succession range from ca. 290 to 260 ka and indicate that the construction of the Faete edifice was at least in part contemporaneous to the edification of the Tuscolano-Artemisio composite lithosome. A significant unconformity at the top of the Rocca di Papa succession underlines an important change of eruptive style to phreatomagmatism. At least three ash- and accretionary lapilli-rich deposits separated by paleosoils, collectively named Campi di Annibale succession are present at the top of the Rocca di Papa succession. The phreatomagmatic products discontinuously drape the inner walls of the summit crater, are almost absent from the highly inclined slopes of the Faete edifice, and mostly pond within the caldera floor. A thin veneer made by an accretionary lapilli-rich ash-layer is ubiquitously present and covers the TSC succession, indicating that the phreatomagmatic phase of the Faete edifice postdates the edification of the Tuscolano-Artemisio ridge. The occurrence of phreatomagmatic eruptions suggests to reconsider the origin of the summit depression of the Faete at least partly as the crater of a summit tuff ring. The phreatomagmatic deposits are covered by the Monte Cavo and Colle Iano scoria cones, which close the eruptive history of the Faete stratovolcano.
The larger, peripheral lava flows attributed to the Faete phase span the interval 298-277 ka. The observed and/or inferred vents of the Capo di Bove, Divino Amore, Frascati-Monte Mellone, Monte Falcone, Osa, and Saponara lava flows cluster in a relatively narrow northeast-southwest-oriented band, indicating a possible peripheral vent system corresponding to a buried, pre-existing tectonic lineament. The oldest dated lava flow from this phase of activity, the Monte Mellone lava flow (308Ā±2 ka), is associated with other small lava flows that erupted in the same area. Among these, the Frascati lava flow shows the most primitive composition of the Alban Hills rock types. Younger ages (267-268 ka) have other minor lava flows and lavas cut by later phreatomagmatic craters, such as the lava flow cut by the Albano crater, which are associated with central vent activity of the Faete edifice.

c) the Via dei Laghi maar field. The most recent activity is confined to the Via dei Laghi maar field (Giordano et al., 2006), where phreatic to phreatomagmatic eruptions formed overlapping maars and tuff cones along the western and northern slopes of the volcano. From the oldest to the youngest, it is possible to identify the maars of Pantano Secco, Prata Porci, Valle Marciana, Nemi, Ariccia, Laghetto di Giuturna, and Albano, the latter being the most recent centre of volcanic activity. The young Albano maar centre gave rise to a succession of rock-units which, from the lowermost towards the uppermost one, are presently named the Montagnaccio, Coste dei Laghi, Corona del Lago, Cantone, Peperino Albano, Villa Doria, and Albalonga units.
The Via dei Laghi composite lithosome includes all phreatomagmatic and phreatic products related to the mostly eccentric activity that has characterised the Colli Albani since approximately 200 ka (the oldest age available for the products from Ariccia maar; Marra et al. 2003) to the Holocene (5.8Ā±0.1 ka) for the Tavolato succession from the Albano maar. It is a composite lithosome made by several overlapping maars, located along the western and northern slope of the volcano. The maars of Valle Marciana, Pantano Secco, Prata Porci, and Ariccia are monogenetic, whereas Albano (at least 7 eruptions), Laghetto (2 eruptions), and Nemi (2 eruptions) are polygenetic, i.e. made by coalescing craters. The lithosome comprises a series of maars, characterised by gentle slopes, 2ā€“10Ā° inclined, abruptly interrupted by the inner walls of the craters, two of which, Albano and Nemi, presently still host lakes. The Albano maar is the most recent and still active maar, although quiescent (Funiciello et al., 2003). Available age determinations indicate that the recent activity from Albano span from 39Ar/40Ar 45Ā±3 ka to 14C 5.8Ā±0.1 ka. The typical lithofacies is plane-parallel to low-angle cross-stratified, with alternating ash-rich and accretionary- or armored-lapilli-rich layers generally strongly cemented for the zeolitisation of the glass shards, and ash-matrix supported to ash-free, poorly vesicular scoria lapilli beds. Xenoliths of lava, intrusive, and sedimentary carbonate are ubiquitously present, and may form breccia divisions, at proximal locations, i.e. along the inner maar walls. Ash shards generally show blocky shapes. A second typical lithofacies is found mostly ponded within paleovalleys and within craters, where deposits are massive and chaotic, strongly zeolitised, ash-matrix supported, with up to 10ā€“15% of up to metre size blocks of lava, intrusive, and carbonate sedimentary xenoliths. Thicknesses may reach 30 m. This lithofacies isassociated with higher sedimentation rates where topography acted as a sedimentary trap. Phreatomagmatic deposits do not show transition to deposits from purely magmatic phases, like scoria cones or lava flows.

Recent studies (Funiciello et al., 2003, De Benedetti et al., 2008) identified in addition a number of lahar deposits due to intermittent water overflows from the Albano lake, which filled the previous WĆ¼rmian valley fan around the crater (particularly those toward the north and north-west mountain side) and covered the very last phreatomagmatic deposits from the Albano maar. Such lahars constitute the Tavolato formation, where several individual thin units have been identified (Laurora et al., 2009), the uppermost of which was radiometrically dated 5.8 ka (Giordano et al., 2010). However, stratigraphic and archaeological evidence shows that some of them emplaced even during Roman times (De Benedetti et al., 2008). The lahars of the Tavolato formation represent a chaotic sampling of most if not all eruptive and explosive deposits of the Colli Albani Volcano. All the recent explosive products and derived lahar deposits are characterised by the presence of xenoliths of sedimentary, metamorphic, and magmatic nature.


Numerous mineral localities are now in a protected area (Regional Park of the Castelli Romani), where quarrying and collecting is forbidden.

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Mineral List

Mineral list contains entries from the region specified including sub-localities

99 valid minerals. 6 (TL) - type locality of valid minerals. 1 (FRL) - first recorded locality of unapproved mineral/variety/etc. 1 erroneous literature entry.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Rock list contains entries from the region specified including sub-localities

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

ā“˜ Afwillite
Formula: Ca3(HSiO4)2 · 2H2O
ā“˜ 'Alkali Feldspar'
ā“˜ Allanite-(Ce)
Formula: (CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
ā“˜ 'Amphibole Supergroup'
Formula: AB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
ā“˜ Analcime
Formula: Na(AlSi2O6) · H2O
ā“˜ Andradite
Formula: Ca3Fe3+2(SiO4)3
Localities: Reported from at least 10 localities in this region.
ā“˜ Andradite var. Melanite
Formula: Ca3(Fe3+,Ti)2(SiO4)3
Localities: Reported from at least 8 localities in this region.
ā“˜ 'Andradite-Grossular Series'
ā“˜ Anhydrite
Formula: CaSO4
ā“˜ Ankerite
Formula: Ca(Fe2+,Mg)(CO3)2
ā“˜ Anorthite
Formula: Ca(Al2Si2O8)
ā“˜ Anorthite var. Labradorite
Formula: (Ca,Na)[Al(Al,Si)Si2O8]
ā“˜ 'Apatite'
Formula: Ca5(PO4)3(Cl/F/OH)
Localities: Reported from at least 9 localities in this region.
ā“˜ 'Apophyllite Group'
Formula: AB4[Si8O22]X · 8H2O
Description: Found in 1979 as tabular crystals.
ā“˜ Aragonite
Formula: CaCO3
References:
ā“˜ Artinite
Formula: Mg2(CO3)(OH)2 · 3H2O
ā“˜ Ashcroftine-(Y)
Formula: K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
Description: Reported without references in Anthony et al. (1995, reprinted 2003). Many specimens of presumed ashcroftine-(Y) submitted for analysis resulted to be amorphous or non-crystalline (see http://forum.amiminerals.it/viewtopic.php?t=6071). According to Carlini & Signoretti (2018) the lilac, brown or creamy interlaced acicular crystals or felted masses incorrectly attributed in the past by some collectors to ashcroftine-(Y) are referable to more or less altered terms of the ludwigite-vonsenite series.
ā“˜ Atacamite ?
Formula: Cu2(OH)3Cl
ā“˜ Augite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Localities: Reported from at least 9 localities in this region.
ā“˜ Augite var. Fassaite
Formula: (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
ā“˜ Baddeleyite
Formula: ZrO2
ā“˜ Baryte
Formula: BaSO4
ā“˜ 'Biotite'
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Localities: Reported from at least 11 localities in this region.
ā“˜ Boulangerite
Formula: Pb5Sb4S11
ā“˜ Britholite-(Ce)
Formula: (Ce,Ca)5(SiO4)3OH
ā“˜ Cahnite
Formula: Ca2[B(OH)4](AsO4)
ā“˜ Calcite
Formula: CaCO3
Localities: Reported from at least 13 localities in this region.
ā“˜ Celestine
Formula: SrSO4
ā“˜ 'Chabazite'
References:
ā“˜ Chabazite-K
Formula: (K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
ā“˜ Chabazite-Sr
Formula: Sr2[Al2Si4O12]2 · 12H2O
ā“˜ Chalcocite
Formula: Cu2S
ā“˜ 'Chrome-Spinel (of Dana)'
ā“˜ Chromite
Formula: Fe2+Cr3+2O4
Description: Mg rich; as inclusions in olivine.
ā“˜ 'Clinopyroxene Subgroup'
Localities: Reported from at least 6 localities in this region.
ā“˜ Copper
Formula: Cu
ā“˜ Cuprite
Formula: Cu2O
ā“˜ Cuspidine
Formula: Ca8(Si2O7)2F4
ā“˜ Danburite
Formula: CaB2Si2O8
ā“˜ Dawsonite
Formula: NaAlCO3(OH)2
ā“˜ Diopside
Formula: CaMgSi2O6
ā“˜ 'Diopside-Hedenbergite Series'
ā“˜ Dolomite
Formula: CaMg(CO3)2
ā“˜ Ekanite
Formula: Ca2ThSi8O20
ā“˜ Ettringite
Formula: Ca6Al2(SO4)3(OH)12 · 26H2O
ā“˜ 'Fayalite-Forsterite Series'
Localities: Reported from at least 6 localities in this region.
ā“˜ 'Feldspathoid'
ā“˜ Fluoborite
Formula: Mg3(BO3)(F,OH)3
References:
ā“˜ Fluorapatite
Formula: Ca5(PO4)3F
Description: Reported as "apatite" prior to 1982.
References:
ā“˜ Fluorite
Formula: CaF2
ā“˜ Fluorophlogopite
Formula: KMg3(Si3Al)O10F2
ā“˜ Forsterite
Formula: Mg2SiO4
Localities: Reported from at least 6 localities in this region.
ā“˜ Franzinite
Formula: (Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
ā“˜ Galena
Formula: PbS
Description: Erroneously identified as lead in Caponera I., Fiori S., Pucci R., 2003. Fluoborite, piombo nativo, richterite ed altri interessanti ritrovamenti nei Colli Albani. Il Cercapietre, 1-2.
ā“˜ 'Garnet Group'
Formula: X3Z2(SiO4)3
ā“˜ Geikielite
Formula: MgTiO3
ā“˜ Gismondine-Ca (TL)
Formula: CaAl2Si2O8 · 4H2O
ā“˜ 'Gismondine Subgroup' (FRL)
Localities: Reported from at least 7 localities in this region.
ā“˜ 'Glass'
ā“˜ Gonnardite
Formula: (Na,Ca)2(Si,Al)5O10 · 3H2O
ā“˜ Gƶtzenite
Formula: NaCa6Ti(Si2O7)2OF3
ā“˜ Grossular
Formula: Ca3Al2(SiO4)3
ā“˜ 'Guarinite'
Formula: (Na, Ca, Zr, Si, F, O)
ā“˜ Gypsum
Formula: CaSO4 · 2H2O
ā“˜ Harkerite
Formula: Ca48Mg16[AlSi4O15(OH)]4(BO3)16(CO3)16 · 2(H2O,HCl)
ā“˜ Hastingsite
Formula: NaCa2(Fe2+4Fe3+)(Si6Al2)O22(OH)2
ā“˜ HaĆ¼yne (TL)
Formula: Na3Ca(Si3Al3)O12(SO4)
Localities: Reported from at least 8 localities in this region.
References:
ā“˜ Hedenbergite
Formula: CaFe2+Si2O6
ā“˜ 'Hellandite'
ā“˜ Hercynite
Formula: Fe2+Al2O4
ā“˜ 'Hornblende Root Name Group'
Formula: ◻Ca2(Z2+4Z3+)(AlSi7O22)(OH,F,Cl)2
ā“˜ Hydromagnesite
Formula: Mg5(CO3)4(OH)2 · 4H2O
Localities: Reported from at least 6 localities in this region.
ā“˜ Kaliophilite
Formula: KAlSiO4
ā“˜ Kalsilite
Formula: KAlSiO4
ā“˜ 'K Feldspar'
ā“˜ 'K Feldspar var. Adularia'
Formula: KAlSi3O8
ā“˜ Kirschsteinite
Formula: CaFe2+SiO4
ā“˜ Larnite
Formula: Ca2SiO4
ā“˜ Latiumite (TL)
Formula: (Ca,K)4(Si,Al)5O11(SO4,CO3)
ā“˜ Lazurite
Formula: Na7Ca(Al6Si6O24)(SO4)(S3) · H2O
ā“˜ Lead
Formula: Pb
ā“˜ Leucite
Formula: K(AlSi2O6)
Localities: Reported from at least 13 localities in this region.
ā“˜ Ludwigite
Formula: Mg2Fe3+(BO3)O2
ā“˜ Maghemite
Formula: (Fe3+0.670.33)Fe3+2O4
ā“˜ Magnesioferrite
Formula: MgFe3+2O4
ā“˜ Magnesio-hastingsite
Formula: NaCa2(Mg4Fe3+)(Si6Al2)O22(OH)2
ā“˜ Magnetite
Formula: Fe2+Fe3+2O4
Localities: Reported from at least 13 localities in this region.
ā“˜ Marcasite
Formula: FeS2
ā“˜ 'Melilite Group'
Formula: Ca2M(XSiO7)
Localities: Reported from at least 11 localities in this region.
ā“˜ Mesolite
Formula: Na2Ca2Si9Al6O30 · 8H2O
ā“˜ 'Mica Group'
ā“˜ 'Microlite Group'
Formula: A2-mTa2X6-wZ-n
ā“˜ Monticellite
Formula: CaMgSiO4
ā“˜ Natrolite
Formula: Na2Al2Si3O10 · 2H2O
Description: Found only once in 1975, as white sericeous prisms to 3 mm in length, in a veinlet without other zeolites. Associated with fluorapatite, calcite, and nepheline.
ā“˜ Nepheline
Formula: Na3K(Al4Si4O16)
Localities: Reported from at least 12 localities in this region.
ā“˜ Nosean
Formula: Na8(Al6Si6O24)(SO4) · H2O
ā“˜ 'Olivine Group'
Formula: M2SiO4
ā“˜ Opal
Formula: SiO2 · nH2O
ā“˜ Periclase
Formula: MgO
ā“˜ Perovskite
Formula: CaTiO3
ā“˜ Phillipsite-K (TL)
Formula: (K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
ā“˜ 'Phillipsite Subgroup'
ā“˜ Phlogopite
Formula: KMg3(AlSi3O10)(OH)2
Localities: Reported from at least 6 localities in this region.
ā“˜ 'Plagioclase'
Formula: (Na,Ca)[(Si,Al)AlSi2]O8
ā“˜ Pyrite
Formula: FeS2
ā“˜ 'Pyrochlore Group'
Formula: A2Nb2(O,OH)6Z
ā“˜ 'Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)'
Formula: (Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
ā“˜ 'Pyrochlore Supergroup'
Formula: A2-mD2X6-wZ1-n
ā“˜ 'Pyrochlore Supergroup var. Betafite (of Hogarth 1977)'
Formula: (Ca,Na,U)2(Ti, Nb,Ta)2O6Z(OH)
ā“˜ 'Pyroxene Group'
Formula: ADSi2O6
ā“˜ Pyrrhotite
Formula: Fe1-xS
ā“˜ Realgar
Formula: As4S4
ā“˜ Richterite
Formula: Na(NaCa)Mg5(Si8O22)(OH)2
ā“˜ Sanidine
Formula: K(AlSi3O8)
Localities: Reported from at least 6 localities in this region.
ā“˜ Sodalite
Formula: Na4(Si3Al3)O12Cl
ā“˜ 'Sodalite Group'
ā“˜ Spadaite (TL)
Formula: MgSiO2(OH)2 · H2O (?)
Type Locality:
ā“˜ Sphalerite
Formula: ZnS
ā“˜ Spinel
Formula: MgAl2O4
ā“˜ Stillwellite-(Ce)
Formula: (Ce,La,Ca)BSiO5
ā“˜ Thaumasite
Formula: Ca3(SO4)[Si(OH)6](CO3) · 12H2O
ā“˜ Thomsonite-Ca
Formula: NaCa2[Al5Si5O20] · 6H2O
ā“˜ 'Thomsonite Subgroup'
ā“˜ Thorite
Formula: Th(SiO4)
ā“˜ Titanite
Formula: CaTi(SiO4)O
ā“˜ Tobermorite
Formula: Ca4Si6O17(H2O)2 · (Ca · 3H2O)
ā“˜ Tschermakite
Formula: ◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
ā“˜ Vertumnite
Formula: Ca4Al4Si4O6(OH)24 · 3H2O
ā“˜ Vesuvianite
Formula: Ca19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
ā“˜ Vicanite-(Ce)
Formula: (Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
ā“˜ Vishnevite
Formula: (Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
ā“˜ Vonsenite
Formula: Fe2+2Fe3+(BO3)O2
ā“˜ Wiluite
Formula: Ca19MgAl4(Al,Mg)8(B,◻)4◻[Si2O7]4[(SiO4)10]O(O,OH)9
ā“˜ Wollastonite (TL)
Formula: Ca3(Si3O9)
ā“˜ Zircon
Formula: Zr(SiO4)
ā“˜ Zirconolite
Formula: CaZrTi2O7

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
ā“˜Copper1.AA.05Cu
ā“˜Lead1.AA.05Pb
Group 2 - Sulphides and Sulfosalts
ā“˜Chalcocite2.BA.05Cu2S
ā“˜Sphalerite2.CB.05aZnS
ā“˜Pyrrhotite2.CC.10Fe1-xS
ā“˜Galena2.CD.10PbS
ā“˜Pyrite2.EB.05aFeS2
ā“˜Marcasite2.EB.10aFeS2
ā“˜Realgar2.FA.15aAs4S4
ā“˜Boulangerite2.HC.15Pb5Sb4S11
Group 3 - Halides
ā“˜Fluorite3.AB.25CaF2
ā“˜Atacamite ?3.DA.10aCu2(OH)3Cl
Group 4 - Oxides and Hydroxides
ā“˜'Pyrochlore Group
var. Uranpyrochlore (of Hogarth 1977)'
4.00.(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
ā“˜'Microlite Group'4.00.A2-mTa2X6-wZ-n
ā“˜'Pyrochlore Group'4.00.A2Nb2(O,OH)6Z
ā“˜Cuprite4.AA.10Cu2O
ā“˜Periclase4.AB.25MgO
ā“˜Chromite4.BB.05Fe2+Cr3+2O4
ā“˜Magnetite4.BB.05Fe2+Fe3+2O4
ā“˜Hercynite4.BB.05Fe2+Al2O4
ā“˜Magnesioferrite4.BB.05MgFe3+2O4
ā“˜Spinel4.BB.05MgAl2O4
ā“˜Maghemite4.BB.15(Fe3+0.67ā—»0.33)Fe3+2O4
ā“˜Geikielite4.CB.05MgTiO3
ā“˜Perovskite4.CC.30CaTiO3
ā“˜Opal4.DA.10SiO2 Ā· nH2O
ā“˜Baddeleyite4.DE.35ZrO2
ā“˜Zirconolite4.DH.30CaZrTi2O7
Group 5 - Nitrates and Carbonates
ā“˜Calcite5.AB.05CaCO3
ā“˜Dolomite5.AB.10CaMg(CO3)2
ā“˜Ankerite5.AB.10Ca(Fe2+,Mg)(CO3)2
ā“˜Aragonite5.AB.15CaCO3
ā“˜Dawsonite5.BB.10NaAlCO3(OH)2
ā“˜Hydromagnesite5.DA.05Mg5(CO3)4(OH)2 Ā· 4H2O
ā“˜Artinite5.DA.10Mg2(CO3)(OH)2 Ā· 3H2O
Group 6 - Borates
ā“˜Vonsenite6.AB.30Fe2+2Fe3+(BO3)O2
ā“˜Ludwigite6.AB.30Mg2Fe3+(BO3)O2
ā“˜Fluoborite6.AB.50Mg3(BO3)(F,OH)3
ā“˜Harkerite6.AB.70Ca48Mg16[AlSi4O15(OH)]4(BO3)16(CO3)16 Ā· 2(H2O,HCl)
ā“˜Cahnite6.AC.70Ca2[B(OH)4](AsO4)
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
ā“˜Anhydrite7.AD.30CaSO4
ā“˜Celestine7.AD.35SrSO4
ā“˜Baryte7.AD.35BaSO4
ā“˜Gypsum7.CD.40CaSO4 Ā· 2H2O
ā“˜Ettringite7.DG.15Ca6Al2(SO4)3(OH)12 Ā· 26H2O
ā“˜Thaumasite7.DG.15Ca3(SO4)[Si(OH)6](CO3) Ā· 12H2O
Group 8 - Phosphates, Arsenates and Vanadates
ā“˜Fluorapatite8.BN.05Ca5(PO4)3F
Group 9 - Silicates
ā“˜Forsterite9.AC.05Mg2SiO4
ā“˜Kirschsteinite9.AC.05CaFe2+SiO4
ā“˜Monticellite9.AC.10CaMgSiO4
ā“˜Larnite9.AD.05Ca2SiO4
ā“˜Grossular9.AD.25Ca3Al2(SiO4)3
ā“˜Andradite
var. Melanite
9.AD.25Ca3(Fe3+,Ti)2(SiO4)3
ā“˜9.AD.25Ca3Fe3+2(SiO4)3
ā“˜Thorite9.AD.30Th(SiO4)
ā“˜Zircon9.AD.30Zr(SiO4)
ā“˜Titanite9.AG.15CaTi(SiO4)O
ā“˜Afwillite9.AG.75Ca3(HSiO4)2 Ā· 2H2O
ā“˜Britholite-(Ce)9.AH.25(Ce,Ca)5(SiO4)3OH
ā“˜Stillwellite-(Ce)9.AJ.25(Ce,La,Ca)BSiO5
ā“˜Vicanite-(Ce)9.AJ.35(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
ā“˜Cuspidine9.BE.17Ca8(Si2O7)2F4
ā“˜Gƶtzenite9.BE.22NaCa6Ti(Si2O7)2OF3
ā“˜Allanite-(Ce)9.BG.05b(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
ā“˜Wiluite9.BG.35Ca19MgAl4(Al,Mg)8(B,ā—»)4ā—»[Si2O7]4[(SiO4)10]O(O,OH)9
ā“˜Vesuvianite9.BG.35Ca19Fe3+Al4(Al6Mg2)(ā—»4)ā—»[Si2O7]4[(SiO4)10]O(OH)9
ā“˜Augite9.DA.15(CaxMgyFez)(Mgy1Fez1)Si2O6
ā“˜Hedenbergite9.DA.15CaFe2+Si2O6
ā“˜Diopside9.DA.15CaMgSi2O6
ā“˜Augite
var. Fassaite
9.DA.15(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
ā“˜Tschermakite9.DE.10ā—»(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
ā“˜Magnesio-hastingsite9.DE.15NaCa2(Mg4Fe3+)(Si6Al2)O22(OH)2
ā“˜Hastingsite9.DE.15NaCa2(Fe2+4Fe3+)(Si6Al2)O22(OH)2
ā“˜Richterite9.DE.20Na(NaCa)Mg5(Si8O22)(OH)2
ā“˜Wollastonite (TL)9.DG.05Ca3(Si3O9)
ā“˜Tobermorite9.DG.10Ca4Si6O17(H2O)2 Ā· (Ca Ā· 3H2O)
ā“˜Ashcroftine-(Y) ?9.DN.15K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 Ā· 8H2O
ā“˜Ekanite9.EA.10Ca2ThSi8O20
ā“˜Phlogopite9.EC.20KMg3(AlSi3O10)(OH)2
ā“˜Fluorophlogopite9.EC.20KMg3(Si3Al)O10F2
ā“˜Spadaite (TL)9.EC.45MgSiO2(OH)2 Ā· H2O (?)
ā“˜Vertumnite9.EG.25Ca4Al4Si4O6(OH)24 Ā· 3H2O
ā“˜Latiumite (TL)9.EG.45(Ca,K)4(Si,Al)5O11(SO4,CO3)
ā“˜Nepheline9.FA.05Na3K(Al4Si4O16)
ā“˜Kalsilite9.FA.05KAlSiO4
ā“˜Kaliophilite9.FA.05KAlSiO4
ā“˜Sanidine9.FA.30K(AlSi3O8)
ā“˜Anorthite
var. Labradorite
9.FA.35(Ca,Na)[Al(Al,Si)Si2O8]
ā“˜9.FA.35Ca(Al2Si2O8)
ā“˜Danburite9.FA.65CaB2Si2O8
ā“˜Franzinite9.FB.05(Na,K)6Ca2(Al6Si6O24)(SO4)2 Ā· 0.5H2O
ā“˜Vishnevite9.FB.05(Na,K)8(Al6Si6O24)(SO4,CO3) Ā· 2H2O
ā“˜Lazurite9.FB.10Na7Ca(Al6Si6O24)(SO4)(S3) Ā· H2O
ā“˜HaĆ¼yne (TL)9.FB.10Na3Ca(Si3Al3)O12(SO4)
ā“˜Sodalite9.FB.10Na4(Si3Al3)O12Cl
ā“˜Nosean9.FB.10Na8(Al6Si6O24)(SO4) Ā· H2O
ā“˜Natrolite9.GA.05Na2Al2Si3O10 Ā· 2H2O
ā“˜Gonnardite9.GA.05(Na,Ca)2(Si,Al)5O10 Ā· 3H2O
ā“˜Mesolite9.GA.05Na2Ca2Si9Al6O30 Ā· 8H2O
ā“˜Thomsonite-Ca9.GA.10NaCa2[Al5Si5O20] Ā· 6H2O
ā“˜Leucite9.GB.05K(AlSi2O6)
ā“˜Analcime9.GB.05Na(AlSi2O6) Ā· H2O
ā“˜Gismondine-Ca (TL)9.GC.05CaAl2Si2O8 Ā· 4H2O
ā“˜Phillipsite-K (TL)9.GC.10(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
ā“˜Chabazite-K9.GD.10(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 Ā· 12H2O
ā“˜Chabazite-Sr9.GD.10Sr2[Al2Si4O12]2 Ā· 12H2O
Unclassified
ā“˜'Apatite'-Ca5(PO4)3(Cl/F/OH)
ā“˜'Plagioclase'-(Na,Ca)[(Si,Al)AlSi2]O8
ā“˜'Sodalite Group'-
ā“˜'Thomsonite Subgroup'-
ā“˜'Gismondine Subgroup' (TL)-
ā“˜'Pyrochlore Supergroup'-A2-mD2X6-wZ1-n
ā“˜'Glass'-
ā“˜'Olivine Group'-M2SiO4
ā“˜'Melilite Group'-Ca2M(XSiO7)
ā“˜'Garnet Group'-X3Z2(SiO4)3
ā“˜'Chrome-Spinel (of Dana)'-
ā“˜'Pyroxene Group'-ADSi2O6
ā“˜'K Feldspar'-
ā“˜'var. Adularia'-KAlSi3O8
ā“˜'Diopside-Hedenbergite Series'-
ā“˜'Hornblende Root Name Group'-ā—»Ca2(Z2+4Z3+)(AlSi7O22)(OH,F,Cl)2
ā“˜'Fayalite-Forsterite Series'-
ā“˜'Andradite-Grossular Series'-
ā“˜'Clinopyroxene Subgroup'-
ā“˜'Hellandite'-
ā“˜'Mica Group'-
ā“˜'Phillipsite Subgroup'-
ā“˜'Guarinite'-(Na, Ca, Zr, Si, F, O)
ā“˜'Chabazite'-
ā“˜'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
ā“˜'Pyrochlore Supergroup
var. Betafite (of Hogarth 1977)'
-(Ca,Na,U)2(Ti, Nb,Ta)2O6Z(OH)
ā“˜'Apophyllite Group'-AB4[Si8O22]X Ā· 8H2O
ā“˜'Amphibole Supergroup'-AB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
ā“˜'Alkali Feldspar'-
ā“˜'Feldspathoid'-

List of minerals for each chemical element

HHydrogen
Hā“˜ AfwilliteCa3(HSiO4)2 · 2H2O
Hā“˜ Allanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
Hā“˜ Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Hā“˜ AnalcimeNa(AlSi2O6) · H2O
Hā“˜ Apophyllite GroupAB4[Si8O22]X · 8H2O
Hā“˜ ArtiniteMg2(CO3)(OH)2 · 3H2O
Hā“˜ Ashcroftine-(Y)K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
Hā“˜ AtacamiteCu2(OH)3Cl
Hā“˜ Pyrochlore Supergroup var. Betafite (of Hogarth 1977)(Ca,Na,U)2(Ti, Nb,Ta)2O6Z(OH)
Hā“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Hā“˜ Britholite-(Ce)(Ce,Ca)5(SiO4)3OH
Hā“˜ CahniteCa2[B(OH)4](AsO4)
Hā“˜ DawsoniteNaAlCO3(OH)2
Hā“˜ EttringiteCa6Al2(SO4)3(OH)12 · 26H2O
Hā“˜ FluoboriteMg3(BO3)(F,OH)3
Hā“˜ Franzinite(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
Hā“˜ Gismondine-CaCaAl2Si2O8 · 4H2O
Hā“˜ Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
Hā“˜ GypsumCaSO4 · 2H2O
Hā“˜ HarkeriteCa48Mg16[AlSi4O15(OH)]4(BO3)16(CO3)16 · 2(H2O,HCl)
Hā“˜ HastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
Hā“˜ HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
Hā“˜ LazuriteNa7Ca(Al6Si6O24)(SO4)(S3) · H2O
Hā“˜ Magnesio-hastingsiteNaCa2(Mg4Fe3+)(Si6Al2)O22(OH)2
Hā“˜ MesoliteNa2Ca2Si9Al6O30 · 8H2O
Hā“˜ NoseanNa8(Al6Si6O24)(SO4) · H2O
Hā“˜ NatroliteNa2Al2Si3O10 · 2H2O
Hā“˜ OpalSiO2 · nH2O
Hā“˜ PhlogopiteKMg3(AlSi3O10)(OH)2
Hā“˜ Pyrochlore GroupA2Nb2(O,OH)6Z
Hā“˜ RichteriteNa(NaCa)Mg5(Si8O22)(OH)2
Hā“˜ SpadaiteMgSiO2(OH)2 · H2O (?)
Hā“˜ ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
Hā“˜ Thomsonite-CaNaCa2[Al5Si5O20] · 6H2O
Hā“˜ TobermoriteCa4Si6O17(H2O)2 · (Ca · 3H2O)
Hā“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
Hā“˜ Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Hā“˜ VertumniteCa4Al4Si4O6(OH)24 · 3H2O
Hā“˜ Vishnevite(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
Hā“˜ VesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
Hā“˜ Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Hā“˜ Chabazite-SrSr2[Al2Si4O12]2 · 12H2O
Hā“˜ Phillipsite-K(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
Hā“˜ WiluiteCa19MgAl4(Al,Mg)8(B,◻)4◻[Si2O7]4[(SiO4)10]O(O,OH)9
Hā“˜ Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
Hā“˜ ApatiteCa5(PO4)3(Cl/F/OH)
BBoron
Bā“˜ CahniteCa2[B(OH)4](AsO4)
Bā“˜ DanburiteCaB2Si2O8
Bā“˜ FluoboriteMg3(BO3)(F,OH)3
Bā“˜ HarkeriteCa48Mg16[AlSi4O15(OH)]4(BO3)16(CO3)16 · 2(H2O,HCl)
Bā“˜ LudwigiteMg2Fe3+(BO3)O2
Bā“˜ Stillwellite-(Ce)(Ce,La,Ca)BSiO5
Bā“˜ VonseniteFe22+Fe3+(BO3)O2
Bā“˜ Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
Bā“˜ WiluiteCa19MgAl4(Al,Mg)8(B,◻)4◻[Si2O7]4[(SiO4)10]O(O,OH)9
CCarbon
Cā“˜ AnkeriteCa(Fe2+,Mg)(CO3)2
Cā“˜ AragoniteCaCO3
Cā“˜ ArtiniteMg2(CO3)(OH)2 · 3H2O
Cā“˜ Ashcroftine-(Y)K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
Cā“˜ CalciteCaCO3
Cā“˜ DawsoniteNaAlCO3(OH)2
Cā“˜ DolomiteCaMg(CO3)2
Cā“˜ HarkeriteCa48Mg16[AlSi4O15(OH)]4(BO3)16(CO3)16 · 2(H2O,HCl)
Cā“˜ HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
Cā“˜ Latiumite(Ca,K)4(Si,Al)5O11(SO4,CO3)
Cā“˜ ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
Cā“˜ Vishnevite(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
OOxygen
Oā“˜ K Feldspar var. AdulariaKAlSi3O8
Oā“˜ AfwilliteCa3(HSiO4)2 · 2H2O
Oā“˜ Allanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
Oā“˜ Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Oā“˜ AnalcimeNa(AlSi2O6) · H2O
Oā“˜ AndraditeCa3Fe23+(SiO4)3
Oā“˜ AnhydriteCaSO4
Oā“˜ AnkeriteCa(Fe2+,Mg)(CO3)2
Oā“˜ AnorthiteCa(Al2Si2O8)
Oā“˜ Apophyllite GroupAB4[Si8O22]X · 8H2O
Oā“˜ AragoniteCaCO3
Oā“˜ ArtiniteMg2(CO3)(OH)2 · 3H2O
Oā“˜ Ashcroftine-(Y)K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
Oā“˜ AtacamiteCu2(OH)3Cl
Oā“˜ Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Oā“˜ BaddeleyiteZrO2
Oā“˜ BaryteBaSO4
Oā“˜ Pyrochlore Supergroup var. Betafite (of Hogarth 1977)(Ca,Na,U)2(Ti, Nb,Ta)2O6Z(OH)
Oā“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Oā“˜ Britholite-(Ce)(Ce,Ca)5(SiO4)3OH
Oā“˜ CahniteCa2[B(OH)4](AsO4)
Oā“˜ CalciteCaCO3
Oā“˜ CelestineSrSO4
Oā“˜ ChromiteFe2+Cr23+O4
Oā“˜ CupriteCu2O
Oā“˜ CuspidineCa8(Si2O7)2F4
Oā“˜ DanburiteCaB2Si2O8
Oā“˜ DawsoniteNaAlCO3(OH)2
Oā“˜ DiopsideCaMgSi2O6
Oā“˜ DolomiteCaMg(CO3)2
Oā“˜ EkaniteCa2ThSi8O20
Oā“˜ EttringiteCa6Al2(SO4)3(OH)12 · 26H2O
Oā“˜ FluoboriteMg3(BO3)(F,OH)3
Oā“˜ FluorapatiteCa5(PO4)3F
Oā“˜ ForsteriteMg2SiO4
Oā“˜ Franzinite(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
Oā“˜ GeikieliteMgTiO3
Oā“˜ Gismondine-CaCaAl2Si2O8 · 4H2O
Oā“˜ Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
Oā“˜ GrossularCa3Al2(SiO4)3
Oā“˜ GƶtzeniteNaCa6Ti(Si2O7)2OF3
Oā“˜ Guarinite(Na, Ca, Zr, Si, F, O)
Oā“˜ GypsumCaSO4 · 2H2O
Oā“˜ HarkeriteCa48Mg16[AlSi4O15(OH)]4(BO3)16(CO3)16 · 2(H2O,HCl)
Oā“˜ HastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
Oā“˜ HaĆ¼yneNa3Ca(Si3Al3)O12(SO4)
Oā“˜ HedenbergiteCaFe2+Si2O6
Oā“˜ HercyniteFe2+Al2O4
Oā“˜ HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
Oā“˜ KaliophiliteKAlSiO4
Oā“˜ KalsiliteKAlSiO4
Oā“˜ KirschsteiniteCaFe2+SiO4
Oā“˜ Anorthite var. Labradorite(Ca,Na)[Al(Al,Si)Si2O8]
Oā“˜ LarniteCa2SiO4
Oā“˜ Latiumite(Ca,K)4(Si,Al)5O11(SO4,CO3)
Oā“˜ LazuriteNa7Ca(Al6Si6O24)(SO4)(S3) · H2O
Oā“˜ LudwigiteMg2Fe3+(BO3)O2
Oā“˜ LeuciteK(AlSi2O6)
Oā“˜ Magnesio-hastingsiteNaCa2(Mg4Fe3+)(Si6Al2)O22(OH)2
Oā“˜ MagnesioferriteMgFe23+O4
Oā“˜ Maghemite(Fe3+0.670.33)Fe23+O4
Oā“˜ MagnetiteFe2+Fe23+O4
Oā“˜ MesoliteNa2Ca2Si9Al6O30 · 8H2O
Oā“˜ MonticelliteCaMgSiO4
Oā“˜ NephelineNa3K(Al4Si4O16)
Oā“˜ NoseanNa8(Al6Si6O24)(SO4) · H2O
Oā“˜ NatroliteNa2Al2Si3O10 · 2H2O
Oā“˜ OpalSiO2 · nH2O
Oā“˜ PericlaseMgO
Oā“˜ PerovskiteCaTiO3
Oā“˜ PhlogopiteKMg3(AlSi3O10)(OH)2
Oā“˜ Pyrochlore GroupA2Nb2(O,OH)6Z
Oā“˜ RichteriteNa(NaCa)Mg5(Si8O22)(OH)2
Oā“˜ SanidineK(AlSi3O8)
Oā“˜ SodaliteNa4(Si3Al3)O12Cl
Oā“˜ SpadaiteMgSiO2(OH)2 · H2O (?)
Oā“˜ SpinelMgAl2O4
Oā“˜ Stillwellite-(Ce)(Ce,La,Ca)BSiO5
Oā“˜ ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
Oā“˜ Thomsonite-CaNaCa2[Al5Si5O20] · 6H2O
Oā“˜ ThoriteTh(SiO4)
Oā“˜ TitaniteCaTi(SiO4)O
Oā“˜ TobermoriteCa4Si6O17(H2O)2 · (Ca · 3H2O)
Oā“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
Oā“˜ Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Oā“˜ VertumniteCa4Al4Si4O6(OH)24 · 3H2O
Oā“˜ Vishnevite(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
Oā“˜ VonseniteFe22+Fe3+(BO3)O2
Oā“˜ VesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
Oā“˜ WollastoniteCa3(Si3O9)
Oā“˜ ZirconZr(SiO4)
Oā“˜ ZirconoliteCaZrTi2O7
Oā“˜ Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Oā“˜ Chabazite-SrSr2[Al2Si4O12]2 · 12H2O
Oā“˜ Phillipsite-K(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
Oā“˜ Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
Oā“˜ WiluiteCa19MgAl4(Al,Mg)8(B,◻)4◻[Si2O7]4[(SiO4)10]O(O,OH)9
Oā“˜ Andradite var. MelaniteCa3(Fe3+,Ti)2(SiO4)3
Oā“˜ Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
Oā“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Oā“˜ Pyroxene GroupADSi2O6
Oā“˜ Garnet GroupX3Z2(SiO4)3
Oā“˜ Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Oā“˜ FluorophlogopiteKMg3(Si3Al)O10F2
Oā“˜ ApatiteCa5(PO4)3(Cl/F/OH)
Oā“˜ Olivine GroupM2SiO4
Oā“˜ Melilite GroupCa2M(XSiO7)
FFluorine
Fā“˜ Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Fā“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Fā“˜ CuspidineCa8(Si2O7)2F4
Fā“˜ FluoboriteMg3(BO3)(F,OH)3
Fā“˜ FluorapatiteCa5(PO4)3F
Fā“˜ FluoriteCaF2
Fā“˜ GƶtzeniteNaCa6Ti(Si2O7)2OF3
Fā“˜ Guarinite(Na, Ca, Zr, Si, F, O)
Fā“˜ Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Fā“˜ Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
Fā“˜ Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
Fā“˜ FluorophlogopiteKMg3(Si3Al)O10F2
Fā“˜ ApatiteCa5(PO4)3(Cl/F/OH)
NaSodium
Naā“˜ AnalcimeNa(AlSi2O6) · H2O
Naā“˜ Ashcroftine-(Y)K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
Naā“˜ Pyrochlore Supergroup var. Betafite (of Hogarth 1977)(Ca,Na,U)2(Ti, Nb,Ta)2O6Z(OH)
Naā“˜ DawsoniteNaAlCO3(OH)2
Naā“˜ Franzinite(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
Naā“˜ Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
Naā“˜ GƶtzeniteNaCa6Ti(Si2O7)2OF3
Naā“˜ Guarinite(Na, Ca, Zr, Si, F, O)
Naā“˜ HastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
Naā“˜ HaĆ¼yneNa3Ca(Si3Al3)O12(SO4)
Naā“˜ Anorthite var. Labradorite(Ca,Na)[Al(Al,Si)Si2O8]
Naā“˜ LazuriteNa7Ca(Al6Si6O24)(SO4)(S3) · H2O
Naā“˜ Magnesio-hastingsiteNaCa2(Mg4Fe3+)(Si6Al2)O22(OH)2
Naā“˜ MesoliteNa2Ca2Si9Al6O30 · 8H2O
Naā“˜ NephelineNa3K(Al4Si4O16)
Naā“˜ NoseanNa8(Al6Si6O24)(SO4) · H2O
Naā“˜ NatroliteNa2Al2Si3O10 · 2H2O
Naā“˜ RichteriteNa(NaCa)Mg5(Si8O22)(OH)2
Naā“˜ SodaliteNa4(Si3Al3)O12Cl
Naā“˜ Thomsonite-CaNaCa2[Al5Si5O20] · 6H2O
Naā“˜ Vishnevite(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
Naā“˜ Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Naā“˜ Phillipsite-K(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
Naā“˜ Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
Naā“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Naā“˜ Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
MgMagnesium
Mgā“˜ AnkeriteCa(Fe2+,Mg)(CO3)2
Mgā“˜ ArtiniteMg2(CO3)(OH)2 · 3H2O
Mgā“˜ Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Mgā“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Mgā“˜ DiopsideCaMgSi2O6
Mgā“˜ DolomiteCaMg(CO3)2
Mgā“˜ FluoboriteMg3(BO3)(F,OH)3
Mgā“˜ ForsteriteMg2SiO4
Mgā“˜ GeikieliteMgTiO3
Mgā“˜ HarkeriteCa48Mg16[AlSi4O15(OH)]4(BO3)16(CO3)16 · 2(H2O,HCl)
Mgā“˜ HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
Mgā“˜ LudwigiteMg2Fe3+(BO3)O2
Mgā“˜ Magnesio-hastingsiteNaCa2(Mg4Fe3+)(Si6Al2)O22(OH)2
Mgā“˜ MagnesioferriteMgFe23+O4
Mgā“˜ MonticelliteCaMgSiO4
Mgā“˜ PericlaseMgO
Mgā“˜ PhlogopiteKMg3(AlSi3O10)(OH)2
Mgā“˜ RichteriteNa(NaCa)Mg5(Si8O22)(OH)2
Mgā“˜ SpadaiteMgSiO2(OH)2 · H2O (?)
Mgā“˜ SpinelMgAl2O4
Mgā“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
Mgā“˜ VesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
Mgā“˜ Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Mgā“˜ WiluiteCa19MgAl4(Al,Mg)8(B,◻)4◻[Si2O7]4[(SiO4)10]O(O,OH)9
Mgā“˜ Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Mgā“˜ FluorophlogopiteKMg3(Si3Al)O10F2
AlAluminium
Alā“˜ K Feldspar var. AdulariaKAlSi3O8
Alā“˜ Allanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
Alā“˜ Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Alā“˜ AnalcimeNa(AlSi2O6) · H2O
Alā“˜ AnorthiteCa(Al2Si2O8)
Alā“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Alā“˜ DawsoniteNaAlCO3(OH)2
Alā“˜ EttringiteCa6Al2(SO4)3(OH)12 · 26H2O
Alā“˜ Franzinite(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
Alā“˜ Gismondine-CaCaAl2Si2O8 · 4H2O
Alā“˜ Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
Alā“˜ GrossularCa3Al2(SiO4)3
Alā“˜ HarkeriteCa48Mg16[AlSi4O15(OH)]4(BO3)16(CO3)16 · 2(H2O,HCl)
Alā“˜ HastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
Alā“˜ HaĆ¼yneNa3Ca(Si3Al3)O12(SO4)
Alā“˜ HercyniteFe2+Al2O4
Alā“˜ KaliophiliteKAlSiO4
Alā“˜ KalsiliteKAlSiO4
Alā“˜ Anorthite var. Labradorite(Ca,Na)[Al(Al,Si)Si2O8]
Alā“˜ Latiumite(Ca,K)4(Si,Al)5O11(SO4,CO3)
Alā“˜ LazuriteNa7Ca(Al6Si6O24)(SO4)(S3) · H2O
Alā“˜ LeuciteK(AlSi2O6)
Alā“˜ Magnesio-hastingsiteNaCa2(Mg4Fe3+)(Si6Al2)O22(OH)2
Alā“˜ MesoliteNa2Ca2Si9Al6O30 · 8H2O
Alā“˜ NephelineNa3K(Al4Si4O16)
Alā“˜ NoseanNa8(Al6Si6O24)(SO4) · H2O
Alā“˜ NatroliteNa2Al2Si3O10 · 2H2O
Alā“˜ PhlogopiteKMg3(AlSi3O10)(OH)2
Alā“˜ SanidineK(AlSi3O8)
Alā“˜ SodaliteNa4(Si3Al3)O12Cl
Alā“˜ SpinelMgAl2O4
Alā“˜ Thomsonite-CaNaCa2[Al5Si5O20] · 6H2O
Alā“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
Alā“˜ VertumniteCa4Al4Si4O6(OH)24 · 3H2O
Alā“˜ Vishnevite(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
Alā“˜ VesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
Alā“˜ Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Alā“˜ Chabazite-SrSr2[Al2Si4O12]2 · 12H2O
Alā“˜ Phillipsite-K(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
Alā“˜ WiluiteCa19MgAl4(Al,Mg)8(B,◻)4◻[Si2O7]4[(SiO4)10]O(O,OH)9
Alā“˜ Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
Alā“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Alā“˜ Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Alā“˜ FluorophlogopiteKMg3(Si3Al)O10F2
SiSilicon
Siā“˜ K Feldspar var. AdulariaKAlSi3O8
Siā“˜ AfwilliteCa3(HSiO4)2 · 2H2O
Siā“˜ Allanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
Siā“˜ Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Siā“˜ AnalcimeNa(AlSi2O6) · H2O
Siā“˜ AndraditeCa3Fe23+(SiO4)3
Siā“˜ AnorthiteCa(Al2Si2O8)
Siā“˜ Apophyllite GroupAB4[Si8O22]X · 8H2O
Siā“˜ Ashcroftine-(Y)K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
Siā“˜ Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Siā“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Siā“˜ Britholite-(Ce)(Ce,Ca)5(SiO4)3OH
Siā“˜ CuspidineCa8(Si2O7)2F4
Siā“˜ DanburiteCaB2Si2O8
Siā“˜ DiopsideCaMgSi2O6
Siā“˜ EkaniteCa2ThSi8O20
Siā“˜ ForsteriteMg2SiO4
Siā“˜ Franzinite(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
Siā“˜ Gismondine-CaCaAl2Si2O8 · 4H2O
Siā“˜ Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
Siā“˜ GrossularCa3Al2(SiO4)3
Siā“˜ GƶtzeniteNaCa6Ti(Si2O7)2OF3
Siā“˜ Guarinite(Na, Ca, Zr, Si, F, O)
Siā“˜ HarkeriteCa48Mg16[AlSi4O15(OH)]4(BO3)16(CO3)16 · 2(H2O,HCl)
Siā“˜ HastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
Siā“˜ HaĆ¼yneNa3Ca(Si3Al3)O12(SO4)
Siā“˜ HedenbergiteCaFe2+Si2O6
Siā“˜ KaliophiliteKAlSiO4
Siā“˜ KalsiliteKAlSiO4
Siā“˜ KirschsteiniteCaFe2+SiO4
Siā“˜ Anorthite var. Labradorite(Ca,Na)[Al(Al,Si)Si2O8]
Siā“˜ LarniteCa2SiO4
Siā“˜ Latiumite(Ca,K)4(Si,Al)5O11(SO4,CO3)
Siā“˜ LazuriteNa7Ca(Al6Si6O24)(SO4)(S3) · H2O
Siā“˜ LeuciteK(AlSi2O6)
Siā“˜ Magnesio-hastingsiteNaCa2(Mg4Fe3+)(Si6Al2)O22(OH)2
Siā“˜ MesoliteNa2Ca2Si9Al6O30 · 8H2O
Siā“˜ MonticelliteCaMgSiO4
Siā“˜ NephelineNa3K(Al4Si4O16)
Siā“˜ NoseanNa8(Al6Si6O24)(SO4) · H2O
Siā“˜ NatroliteNa2Al2Si3O10 · 2H2O
Siā“˜ OpalSiO2 · nH2O
Siā“˜ PhlogopiteKMg3(AlSi3O10)(OH)2
Siā“˜ RichteriteNa(NaCa)Mg5(Si8O22)(OH)2
Siā“˜ SanidineK(AlSi3O8)
Siā“˜ SodaliteNa4(Si3Al3)O12Cl
Siā“˜ SpadaiteMgSiO2(OH)2 · H2O (?)
Siā“˜ Stillwellite-(Ce)(Ce,La,Ca)BSiO5
Siā“˜ ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
Siā“˜ Thomsonite-CaNaCa2[Al5Si5O20] · 6H2O
Siā“˜ ThoriteTh(SiO4)
Siā“˜ TitaniteCaTi(SiO4)O
Siā“˜ TobermoriteCa4Si6O17(H2O)2 · (Ca · 3H2O)
Siā“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
Siā“˜ VertumniteCa4Al4Si4O6(OH)24 · 3H2O
Siā“˜ Vishnevite(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
Siā“˜ VesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
Siā“˜ WollastoniteCa3(Si3O9)
Siā“˜ ZirconZr(SiO4)
Siā“˜ Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Siā“˜ Chabazite-SrSr2[Al2Si4O12]2 · 12H2O
Siā“˜ Phillipsite-K(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
Siā“˜ Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
Siā“˜ WiluiteCa19MgAl4(Al,Mg)8(B,◻)4◻[Si2O7]4[(SiO4)10]O(O,OH)9
Siā“˜ Andradite var. MelaniteCa3(Fe3+,Ti)2(SiO4)3
Siā“˜ Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
Siā“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Siā“˜ Pyroxene GroupADSi2O6
Siā“˜ Garnet GroupX3Z2(SiO4)3
Siā“˜ Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Siā“˜ FluorophlogopiteKMg3(Si3Al)O10F2
Siā“˜ Olivine GroupM2SiO4
Siā“˜ Melilite GroupCa2M(XSiO7)
PPhosphorus
Pā“˜ FluorapatiteCa5(PO4)3F
Pā“˜ ApatiteCa5(PO4)3(Cl/F/OH)
SSulfur
Sā“˜ AnhydriteCaSO4
Sā“˜ BaryteBaSO4
Sā“˜ BoulangeritePb5Sb4S11
Sā“˜ CelestineSrSO4
Sā“˜ ChalcociteCu2S
Sā“˜ EttringiteCa6Al2(SO4)3(OH)12 · 26H2O
Sā“˜ Franzinite(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
Sā“˜ GalenaPbS
Sā“˜ GypsumCaSO4 · 2H2O
Sā“˜ HaĆ¼yneNa3Ca(Si3Al3)O12(SO4)
Sā“˜ Latiumite(Ca,K)4(Si,Al)5O11(SO4,CO3)
Sā“˜ LazuriteNa7Ca(Al6Si6O24)(SO4)(S3) · H2O
Sā“˜ MarcasiteFeS2
Sā“˜ NoseanNa8(Al6Si6O24)(SO4) · H2O
Sā“˜ PyriteFeS2
Sā“˜ PyrrhotiteFe1-xS
Sā“˜ RealgarAs4S4
Sā“˜ SphaleriteZnS
Sā“˜ ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
Sā“˜ Vishnevite(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
ClChlorine
Clā“˜ Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Clā“˜ AtacamiteCu2(OH)3Cl
Clā“˜ HarkeriteCa48Mg16[AlSi4O15(OH)]4(BO3)16(CO3)16 · 2(H2O,HCl)
Clā“˜ SodaliteNa4(Si3Al3)O12Cl
Clā“˜ Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
Clā“˜ ApatiteCa5(PO4)3(Cl/F/OH)
KPotassium
Kā“˜ K Feldspar var. AdulariaKAlSi3O8
Kā“˜ Ashcroftine-(Y)K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
Kā“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Kā“˜ Franzinite(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
Kā“˜ KaliophiliteKAlSiO4
Kā“˜ KalsiliteKAlSiO4
Kā“˜ Latiumite(Ca,K)4(Si,Al)5O11(SO4,CO3)
Kā“˜ LeuciteK(AlSi2O6)
Kā“˜ NephelineNa3K(Al4Si4O16)
Kā“˜ PhlogopiteKMg3(AlSi3O10)(OH)2
Kā“˜ SanidineK(AlSi3O8)
Kā“˜ Vishnevite(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
Kā“˜ Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Kā“˜ Phillipsite-K(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
Kā“˜ FluorophlogopiteKMg3(Si3Al)O10F2
CaCalcium
Caā“˜ AfwilliteCa3(HSiO4)2 · 2H2O
Caā“˜ Allanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
Caā“˜ AndraditeCa3Fe23+(SiO4)3
Caā“˜ AnhydriteCaSO4
Caā“˜ AnkeriteCa(Fe2+,Mg)(CO3)2
Caā“˜ AnorthiteCa(Al2Si2O8)
Caā“˜ AragoniteCaCO3
Caā“˜ Ashcroftine-(Y)K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
Caā“˜ Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Caā“˜ Pyrochlore Supergroup var. Betafite (of Hogarth 1977)(Ca,Na,U)2(Ti, Nb,Ta)2O6Z(OH)
Caā“˜ Britholite-(Ce)(Ce,Ca)5(SiO4)3OH
Caā“˜ CahniteCa2[B(OH)4](AsO4)
Caā“˜ CalciteCaCO3
Caā“˜ CuspidineCa8(Si2O7)2F4
Caā“˜ DanburiteCaB2Si2O8
Caā“˜ DiopsideCaMgSi2O6
Caā“˜ DolomiteCaMg(CO3)2
Caā“˜ EkaniteCa2ThSi8O20
Caā“˜ EttringiteCa6Al2(SO4)3(OH)12 · 26H2O
Caā“˜ FluorapatiteCa5(PO4)3F
Caā“˜ FluoriteCaF2
Caā“˜ Franzinite(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
Caā“˜ Gismondine-CaCaAl2Si2O8 · 4H2O
Caā“˜ Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
Caā“˜ GrossularCa3Al2(SiO4)3
Caā“˜ GƶtzeniteNaCa6Ti(Si2O7)2OF3
Caā“˜ Guarinite(Na, Ca, Zr, Si, F, O)
Caā“˜ GypsumCaSO4 · 2H2O
Caā“˜ HarkeriteCa48Mg16[AlSi4O15(OH)]4(BO3)16(CO3)16 · 2(H2O,HCl)
Caā“˜ HastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
Caā“˜ HaĆ¼yneNa3Ca(Si3Al3)O12(SO4)
Caā“˜ HedenbergiteCaFe2+Si2O6
Caā“˜ KirschsteiniteCaFe2+SiO4
Caā“˜ Anorthite var. Labradorite(Ca,Na)[Al(Al,Si)Si2O8]
Caā“˜ LarniteCa2SiO4
Caā“˜ Latiumite(Ca,K)4(Si,Al)5O11(SO4,CO3)
Caā“˜ LazuriteNa7Ca(Al6Si6O24)(SO4)(S3) · H2O
Caā“˜ Magnesio-hastingsiteNaCa2(Mg4Fe3+)(Si6Al2)O22(OH)2
Caā“˜ MesoliteNa2Ca2Si9Al6O30 · 8H2O
Caā“˜ MonticelliteCaMgSiO4
Caā“˜ PerovskiteCaTiO3
Caā“˜ RichteriteNa(NaCa)Mg5(Si8O22)(OH)2
Caā“˜ Stillwellite-(Ce)(Ce,La,Ca)BSiO5
Caā“˜ ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
Caā“˜ Thomsonite-CaNaCa2[Al5Si5O20] · 6H2O
Caā“˜ TitaniteCaTi(SiO4)O
Caā“˜ TobermoriteCa4Si6O17(H2O)2 · (Ca · 3H2O)
Caā“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
Caā“˜ Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Caā“˜ VertumniteCa4Al4Si4O6(OH)24 · 3H2O
Caā“˜ VesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
Caā“˜ WollastoniteCa3(Si3O9)
Caā“˜ ZirconoliteCaZrTi2O7
Caā“˜ Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Caā“˜ Phillipsite-K(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
Caā“˜ Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
Caā“˜ WiluiteCa19MgAl4(Al,Mg)8(B,◻)4◻[Si2O7]4[(SiO4)10]O(O,OH)9
Caā“˜ Andradite var. MelaniteCa3(Fe3+,Ti)2(SiO4)3
Caā“˜ Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
Caā“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Caā“˜ Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Caā“˜ ApatiteCa5(PO4)3(Cl/F/OH)
Caā“˜ Melilite GroupCa2M(XSiO7)
TiTitanium
Tiā“˜ Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Tiā“˜ Pyrochlore Supergroup var. Betafite (of Hogarth 1977)(Ca,Na,U)2(Ti, Nb,Ta)2O6Z(OH)
Tiā“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Tiā“˜ GeikieliteMgTiO3
Tiā“˜ GƶtzeniteNaCa6Ti(Si2O7)2OF3
Tiā“˜ PerovskiteCaTiO3
Tiā“˜ TitaniteCaTi(SiO4)O
Tiā“˜ Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Tiā“˜ ZirconoliteCaZrTi2O7
Tiā“˜ Andradite var. MelaniteCa3(Fe3+,Ti)2(SiO4)3
Tiā“˜ Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
CrChromium
Crā“˜ ChromiteFe2+Cr23+O4
FeIron
Feā“˜ Allanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
Feā“˜ AndraditeCa3Fe23+(SiO4)3
Feā“˜ AnkeriteCa(Fe2+,Mg)(CO3)2
Feā“˜ Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Feā“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Feā“˜ ChromiteFe2+Cr23+O4
Feā“˜ HastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
Feā“˜ HedenbergiteCaFe2+Si2O6
Feā“˜ HercyniteFe2+Al2O4
Feā“˜ KirschsteiniteCaFe2+SiO4
Feā“˜ LudwigiteMg2Fe3+(BO3)O2
Feā“˜ Magnesio-hastingsiteNaCa2(Mg4Fe3+)(Si6Al2)O22(OH)2
Feā“˜ MagnesioferriteMgFe23+O4
Feā“˜ Maghemite(Fe3+0.670.33)Fe23+O4
Feā“˜ MagnetiteFe2+Fe23+O4
Feā“˜ MarcasiteFeS2
Feā“˜ PyriteFeS2
Feā“˜ PyrrhotiteFe1-xS
Feā“˜ VonseniteFe22+Fe3+(BO3)O2
Feā“˜ VesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
Feā“˜ Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
Feā“˜ Andradite var. MelaniteCa3(Fe3+,Ti)2(SiO4)3
Feā“˜ Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
CuCopper
Cuā“˜ AtacamiteCu2(OH)3Cl
Cuā“˜ ChalcociteCu2S
Cuā“˜ CupriteCu2O
Cuā“˜ CopperCu
ZnZinc
Znā“˜ SphaleriteZnS
AsArsenic
Asā“˜ CahniteCa2[B(OH)4](AsO4)
Asā“˜ RealgarAs4S4
Asā“˜ Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
SrStrontium
Srā“˜ CelestineSrSO4
Srā“˜ Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Srā“˜ Chabazite-SrSr2[Al2Si4O12]2 · 12H2O
YYttrium
Yā“˜ Ashcroftine-(Y)K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
ZrZirconium
Zrā“˜ BaddeleyiteZrO2
Zrā“˜ Guarinite(Na, Ca, Zr, Si, F, O)
Zrā“˜ ZirconZr(SiO4)
Zrā“˜ ZirconoliteCaZrTi2O7
NbNiobium
Nbā“˜ Pyrochlore Supergroup var. Betafite (of Hogarth 1977)(Ca,Na,U)2(Ti, Nb,Ta)2O6Z(OH)
Nbā“˜ Pyrochlore GroupA2Nb2(O,OH)6Z
Nbā“˜ Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
SbAntimony
Sbā“˜ BoulangeritePb5Sb4S11
BaBarium
Baā“˜ BaryteBaSO4
Baā“˜ Phillipsite-K(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
LaLanthanum
Laā“˜ Stillwellite-(Ce)(Ce,La,Ca)BSiO5
Laā“˜ Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
CeCerium
Ceā“˜ Allanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
Ceā“˜ Britholite-(Ce)(Ce,Ca)5(SiO4)3OH
Ceā“˜ Stillwellite-(Ce)(Ce,La,Ca)BSiO5
Ceā“˜ Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Ceā“˜ Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
TaTantalum
Taā“˜ Pyrochlore Supergroup var. Betafite (of Hogarth 1977)(Ca,Na,U)2(Ti, Nb,Ta)2O6Z(OH)
Taā“˜ Microlite GroupA2-mTa2X6-wZ-n
Taā“˜ Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
PbLead
Pbā“˜ BoulangeritePb5Sb4S11
Pbā“˜ GalenaPbS
Pbā“˜ LeadPb
ThThorium
Thā“˜ EkaniteCa2ThSi8O20
Thā“˜ ThoriteTh(SiO4)
Thā“˜ Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
UUranium
Uā“˜ Pyrochlore Supergroup var. Betafite (of Hogarth 1977)(Ca,Na,U)2(Ti, Nb,Ta)2O6Z(OH)
Uā“˜ Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)

Fossils

There are 3 fossil localities from the PaleoBioDB database within this region.

BETA TEST - These data are provided on an experimental basis and are taken from external databases. Mindat.org has no control currently over the accuracy of these data.

Occurrences8
Youngest Fossil Listed0.01 Ma (Pleistocene)
Oldest Fossil Listed5.33 Ma (Miocene)
Stratigraphic Units
UnitNo. OccurrencesAge
Via Cortina d'Ampezzo22.588 - 0.0117 Ma (Pleistocene)
Fossils from RegionClick here to show the list.
Accepted NameHierarchy Age
Naticarius
genus
Animalia : Mollusca : Gastropoda : Littorinimorpha : Naticidae : Naticarius1.806 - 0.781 Ma
Pleistocene
Xenophora
genus
Animalia : Mollusca : Gastropoda : Xenophoridae : Xenophora1.806 - 0.781 Ma
Pleistocene
Steno
genus
Animalia : Chordata : Mammalia : Cetacea : Delphinidae : Steno5.333 - 2.588 Ma
Cenozoic
Sus
genus
Animalia : Chordata : Mammalia : Artiodactyla : Suidae : Sus2.588 - 0.0117 Ma
Pleistocene
Leptobos
genus
Animalia : Chordata : Mammalia : Artiodactyla : Bovidae : Leptobos2.588 - 0.0117 Ma
Pleistocene
Mesoplodon longirostris
species
Animalia : Chordata : Mammalia : Cetacea : Ziphiidae : Mesoplodon : Mesoplodon longirostris5.333 - 2.588 Ma
Cenozoic
Calyptraea chinensis
species
Animalia : Mollusca : Gastropoda : Calyptraeidae : Calyptraea : Calyptraea chinensis1.806 - 0.781 Ma
Pleistocene
Capulus hungaricus
species
Animalia : Mollusca : Gastropoda : Capulidae : Capulus : Capulus hungaricus1.806 - 0.781 Ma
Pleistocene
Fossil LocalitiesClick to show 3 fossil localities

Other Databases

Wikipedia:https://en.wikipedia.org/wiki/Alban_Hills
Wikidata ID:Q1129380
GeoNames ID:3183359

Localities in this Region

Other Regions, Features and Areas that Intersect

Eurasian PlateTectonic Plate
Italy

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.

References

 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are Ā© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: March 19, 2024 11:41:33 Page updated: March 13, 2024 23:38:48
Go to top of page