Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Alban Hills (Colli Albani; Colli Albani Volcano; Colli Albani volcanic complex; Alban Hills volcanic complex), Metropolitan City of Rome Capital, Lazio, Italyi
Regional Level Types
Alban Hills (Colli Albani; Colli Albani Volcano; Colli Albani volcanic complex; Alban Hills volcanic complex)Group of Calderas
Metropolitan City of Rome CapitalMetropolitan City
LazioAdministrative Region
ItalyCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Locality type:
Group of Calderas
Largest Settlements:
PlacePopulation
Rome2,318,895 (2018)
Velletri48,443 (2015)
Marino38,013 (2015)
Ciampino35,174 (2015)
Albano Laziale26,684 (2015)
Pomezia22,346 (2015)
Other Languages:
French:
Mont Albain, Ville métropolitaine de Rome Capitale (Province de Rome), Latium, Italie
German:
Colli Albani, Metropolitanstadt Rom Hauptstadt (Provinz Rom), Latium, Italien
Italian:
Colli Albani (Vulcano dei Colli Albani; Complesso vulcanico dei Colli Albani), Città metropolitana di Roma Capitale (Provincia di Roma), Lazio, Italia
Russian:
Альбанские горы, Метрополийный город Рим-столица (Провинция Рим), Лацио, Италия
Simplified Chinese:
阿爾班山, 羅馬首都廣域市, 拉齐奥, 意大利
Spanish:
Montes Albanos, Ciudad metropolitana de Roma Capital (Provincia de Roma), Lacio, Italia
Albanian:
Monti Albani, Lacio, Italia
Breton:
Menezioù Alban, Lazio, Italia
Bulgarian:
Албани, Лацио, Италия
Catalan:
Mont Albà, Ciutat metropolitana de Roma Capital, Laci, Itàlia
Cebuano:
Colli Albani, Lacio, Italya
Czech:
Albanské hory, Lazio, Itálie
Danish:
Albanerbjergene, Lazio, Italien
Dutch:
Albaanse Heuvels, Metropolitane stad Rome Hoofdstad, Lazio, Italië
Indonesian:
Colli Albani, Lazio, Italia
Japanese:
コッリ・アルバーニ, ローマ県, ラツィオ州, イタリア
Macedonian:
Албански Ридови, Лацио, Италија
Norwegian:
Albanerfjellene, Lazio, Italia
Norwegian (Nynorsk):
Albanarfjella, Lazio, Italia
Polish:
Góry Albańskie, Miasto Stołeczne Rzym, Lacjum, Włochy
Portuguese:
Colinas Albanas, Lácio, Itália
Serbian:
Монти Албани, Лацио, Италија
Serbo-Croatian:
Colli Albani, Metropolitanski grad Rim, Lacij, Italija
Slovak:
Albanské vrchy, Lazio, Taliansko
Swedish:
Albanobergen, Lazio, Italien
Turkish:
Alban Tepeleri, Lazio, İtalya
Ukrainian:
Альбанські гори, Рим-Столиця, Лаціо, Італія
West Flemish:
Alboanse Euvels, Lazio, Itoalië


The Alban Hills (Colli Albani) are the caldera remains of the quiescent Colli Albani volcanic complex, located 20 km southeast of Rome.

The Colli Albani volcanic complex is a part of the Roman Comagmatic Region (Washington, 1908), also called Latium-Campania Perpotassic Province, which extends along the Tyrrhenian margin of Central Italy. The volcano is composite, containing multiple superposed edifices or lithosomes. This complex, whose activity lasted from ca. 700,000 years ago to Holocene (Giordano et al., 2006; De Benedetti et al., 2008), is constituted by (from bottom to top):

a) the Vulcano Laziale (VL) ignimbrite plateau and caldera complex (ca. 600–350 ka), which is a 1600 km2 plateau of ignimbrites with a central caldera. The last large eruption (> 50 km3 deposits), formed the Villa Senni Eruption Unit (VSEU) ignimbrites at ca. 355 ka. The succession of ignimbrites forms a gently sloping plateau, 2–5° inclined outward from the central caldera. The compound thickness of the succession of ignimbrite outflow sheets can be up to 200 m. The estimated deposit volume for each ignimbrite unit ranges from ca. 10 to 50+ km3. These volumes identify repeated eruptions of VL, which make this volcano one of the most explosive mafic volcanoes. It is therefore probable that the present day central caldera is the result of poly-phased collapses. The lower ignimbrites are poorly exposed mainly in distal areas. They display distinctive and common phreatomagmatic features, such as abundant (>50%) blocky shaped fine- to coarse-ash and ubiquitous presence of accretionary lapilli and have been collectively named "Pisolitic Tuffs succession". The ignimbrites and interlayered deposits that overlie the "Pisolitic tuffs succession" are much better exposed. These ignimbrites have been studied widely studied and include:
- the Pozzolane Rosse, a dark-red, massive and chaotic ignimbrite, generally 10–20 m thick, but up to 80 m thick in paleovalleys. At the base, a scoria lapilli fallout deposit is present, with dispersal axis toward the east. The matrix of the ignimbrite (60–90%) is mostly made of coarse-ash shards, and crystal fragments of leucite, clinopyroxene, and biotite. The framework is largely made by dark, porphyritic and vesicular to poorly vesicular scoria (vesicles < 40%), denser along flattened rims, seldom rounded or with fluidal shapes, up to 30 cm in diametre (up to 30% vol.), and subordinately by xenoliths of lava, thermometamorphosed carbonates from the substrate, and intrusives. Gas-pipes are frequently observed. The composition is tephritic (Trigila, 1995). The ignimbrite is likely related to a caldera collapse. A reliable 39Ar/40Ar age determination is at 457±4 ka (Karner et al.,2001). The ignimbrite is found as far as 30 km from vent beyond hills 400 m high (Giordano & Chiarabba, 1991);
– the Pozzolane Nere, a dark-grey to black, massive and chaotic ignimbrite generally 1–10 m thick. At the base a stratified scoria lapilli fallout deposit is present, with dispersal axis to the ESE and thicknessof 160 cm at 18 km from caldera centre. The matrix (80–90%) is mostly made of fine-ash shards, and crystal fragments of leucite, clinopyroxene, and biotite. The framework is made by dark-grey, porphyritic and vesicular scoria (vesicles ≤ 50%), seldom rounded or with fluidal shapes, up to 15 cm in diametre (up to 30% vol.), and subordinately by xenoliths of lava, tuffs, and intrusives. The composition is tephri-phonolitic (Trigila, 1995). The ignimbrite is likely related to a caldera collapse. A reliable 39Ar/40Ar age determination is at 407±4 ka (Karner et al.,2001);
- the Villa Senni Eruption Unit (VSEU), which presents at the base cross-stratified, coarse-ash, surge deposit, consistently few centimetres thick over more than 20 km radius from the caldera, overlain by a plane-parallel stratified scoria lapilli fallout deposit, with dispersal axis to the ENE. The fallout deposit is 100 cm thick at the caldera wall and thins to 60 cm at 10 km distance from caldera centre to the E. The fallout deposit is overlain by the Tufo Lionato ignimbrite that is a sillar, lithoidal, and yellow to orange, to brown. The matrix of the ignimbrite (80–90%) is extensively zeolitised into chabazite and phillipsite. Thickness may reach 25 m in paleovalleys, where gas-pipes are frequently observed. The composition varies from K-foiditic to tephri-phonolitic. The Tufo Lionato grades upward into the Pozzolanelle ignimbrite, a distinct depositional unit, but part of the same eruption sequence. The Pozzolanelle is a dark grey to dark red ignimbrite, massive and chaotic, generally 20 m thick and up to 80 m thick in proximal areas. Different from the Tufo Lionato, the Pozzolanelle is non-cemented and preserves its matrix supported texture. The matrix of the ignimbrite (60–90%) is made by coarse-ashs hards, and abundant crystal fragments of leucite (upto 30% of the deposit and up to 2–3 cm in diametre), clinopyroxene, and biotite. The framework is largely made by dark reddish to black, highly porphyritic and vesicular to poorly vesicular scoria (vesicles < 40%), denser along flattened rims, seldom rounded or flattened to spatter, up to 30 cm in diametre (up to 20% vol.), and subordinately by xenoliths of lava, skarn, and intrusives. Gas-pipes are frequently observed at the top. At proximal locations the Pozzolanelle ignimbrite is largely made by the co-ignimbrite breccia facies, constituted by a massive and chaotic, fines poor agglomerate of xenolith blocks up to 2 m in diametre (ca. 30–40% vol., made of lava and tuff, intrusive, skarn, sedimentary clasts in decreasing order of abundance), spatter rags (>10% vol.) and scoria bombs and lapilli (50–60% vol.). Co-ignimbrite breccia lenses are found as far as 10 km from the caldera centre. At several locations, the top of the Pozzolanelle ignimbrite is conformably covered by a succession of decimetre- to metre-thick, planar bedded scoria lapilli beds, that likely are fallout deposits from Plinian to sub-Plinian plumes erupted in the aftermath of the eruption. The composition is tephritic-phonolitic to phonolitic–tephritic. The age for the VSEU ignimbrites is indicated at 366±3 ka by Giordano et al. (2006). The VSEU eruption is the last large volume eruption from the Vulcano Laziale edifice. The shape of the present caldera is largely due to this last paroxysmal event.
These major ignimbrites are covered, especially to the E of the caldera, by successions of mainly scoria lapilli fallout beds, more or less pedogenised, by volcaniclastic deposits and at places by lavaflows. These successions have been named respectively the Corcolle succession, which overlies the Pozzolane Rosse ignimbrite, the Centogocce succession, which overlies the Pozzolane Nere ignimbrite, and the Madonna degli Angeli succession, which overlies the VSEU. These deposits are important and record the style of activity after major caldera collapses.

b) the Tuscolano-Artemisio peri-caldera fissure system and the Faete intra-caldera stratovolcano (∼350–260 ka). Two edifices were built within the Vulcano Laziale (VL) caldera: (1) The horseshoe-shaped Tuscolano-Artemisio (TA) composite edifice (or lithosome) consisting of coalescing, peri-caldera, fissure-related scoriae cones interbedded with lava flows; the fissure system forms two segments controlled by regional fractures; (2) The steep-sided Faete stratovolcano (Maschio delle Faete cone, 949 m a.s.l.) which filled the caldera. The TA and Faete lithosomes partly interfinger. Their products indicate reduced eruption rates relative to the VL period and a change to effusive and mildly explosive eruptions.
In particular, the Tuscolano-Artemisio (TA) composite lithosome is exposed at the continuous and steep ridge, up to 300 m high, that runs along the caldera rim, along two distinct, almost orthogonal segments: the Tuscolano section runs WNW–ESE, from Monte Tuscolo to Monte Castellaccio, where the system sharply changes direction to the SW forming the Artemisio segment. The ridge comprises coalescing scoria cones and lava fissures and resembles a large lava and spatter rampart structure. Two succession have identified: the Madonna degli Angeli succession and the Tuscolo succession separated by asignificant unconformity (Giordano et al., 2006).
The Madonna degli Angeli (MDA) succession overlies the paleosoil developed at the top of the VSEU, and therefore represents the rejuvenation of volcanic activity after the VSEU eruption. The succession displays variable thicknesses, ranging from 80 to less than 5 m. It is thicker at the caldera wall and thins laterally. The MDA deposits are distributed unevenly around the caldera, being thicker and much more extensively present eastward from the caldera. At proximal locations, especially along the caldera walls, the MDA succession is made by alternating lava, scoria, and welded scoria fall deposits, that display define local monogenetic Hawaiian to Strombolian centres. These peri-caldera centres are interbedded with beds of well sorted, vesicular scoria lapilli and lithic clasts. Individual beds are up to 1.5 m thick. These scoria beds can be traced outward for tens of kilometres to the east, well over the Apennine mountains with compound dispersal areas, covering more than 600 km2. The available age constrain to the emplacement of the MDA succession is the 39Ar/40Ar age determination at 351±3ka for a lava dyke that cuts the MDA deposits at Monte Castellaccio (Karner et al., 2001).
The Tuscolo (TSC) succession is made by scoria, welded scoria, clastogenic lavas and lava units. The deposits are mostly made by poorly sorted to sorted, poorly stratified to bedded, bomb- to lapilli-size scoria(>90%) with subordinated block and lapilli lava xenoliths. Scoria beds grade, close to vent, from welded scoria to clastogenic lavas. Scoria beds can bereferred to several peri-caldera coalescing scoria, spatter and lava cones, which still preserve their original morphology. The present day morphological relief of the caldera is mostly made by the TA deposits. The TSC fissure-related coalescing centres are still well preserved and cover theerosional unconformity that cuts the MDA succession. The scarce 39Ar/40Ar age determinations on lavas belonging to the TSC succession indicate the emplacement are at ca. 310 ka. The Pantano Borghese member is part of the TSC succession, and is made of lavas, scoria cones, and one maar (the Castiglione maar) issuing from the NW–SE Pantano Borghese fissure, located approximately 4 km to the NE of the almost parallel Monte Tuscolo–Monte Castellaccio peri-caldera fissure. The Pantano Borghese fissure is more recent than scoria cones and lava flows erupted from the Monte Tuscolo-Monte Castellaccio fissure. The age of the Pantano Borghese member is constrained between ca. 300 and ca. 260 ka.
The Faete lithosome is the product of the main stratocone that rises from the caldera floor at 500 m a.s.l., to the almost 1000 m a.s.l. at its top. The flanks are steep, up to 45° inclined and along the lower reaches there are several eccentric scoria cones. The top of the volcano is truncated by a circular (2×2 km) depression usually interpreted as a small collapse caldera (De Rita et al., 1988), along the edges of which two scoria cones are located, Monte Cavo and Colle Iano scoria cones. The main stratovolcano is made by the Rocca di Papa succession, mostly made of lava, welded scoria, and scoria fall deposits, indicating an effusive to mild explosive style of activity. The presence of unconformities, paleosoils and volcaniclastic deposits indicate that the stratocone was built during successive phases of activity. Available K/Ar and 39Ar/40Ar age determinations on lava samples from this succession range from ca. 290 to 260 ka and indicate that the construction of the Faete edifice was at least in part contemporaneous to the edification of the Tuscolano-Artemisio composite lithosome. A significant unconformity at the top of the Rocca di Papa succession underlines an important change of eruptive style to phreatomagmatism. At least three ash- and accretionary lapilli-rich deposits separated by paleosoils, collectively named Campi di Annibale succession are present at the top of the Rocca di Papa succession. The phreatomagmatic products discontinuously drape the inner walls of the summit crater, are almost absent from the highly inclined slopes of the Faete edifice, and mostly pond within the caldera floor. A thin veneer made by an accretionary lapilli-rich ash-layer is ubiquitously present and covers the TSC succession, indicating that the phreatomagmatic phase of the Faete edifice postdates the edification of the Tuscolano-Artemisio ridge. The occurrence of phreatomagmatic eruptions suggests to reconsider the origin of the summit depression of the Faete at least partly as the crater of a summit tuff ring. The phreatomagmatic deposits are covered by the Monte Cavo and Colle Iano scoria cones, which close the eruptive history of the Faete stratovolcano.
The larger, peripheral lava flows attributed to the Faete phase span the interval 298-277 ka. The observed and/or inferred vents of the Capo di Bove, Divino Amore, Frascati-Monte Mellone, Monte Falcone, Osa, and Saponara lava flows cluster in a relatively narrow northeast-southwest-oriented band, indicating a possible peripheral vent system corresponding to a buried, pre-existing tectonic lineament. The oldest dated lava flow from this phase of activity, the Monte Mellone lava flow (308±2 ka), is associated with other small lava flows that erupted in the same area. Among these, the Frascati lava flow shows the most primitive composition of the Alban Hills rock types. Younger ages (267-268 ka) have other minor lava flows and lavas cut by later phreatomagmatic craters, such as the lava flow cut by the Albano crater, which are associated with central vent activity of the Faete edifice.

c) the Via dei Laghi maar field. The most recent activity is confined to the Via dei Laghi maar field (Giordano et al., 2006), where phreatic to phreatomagmatic eruptions formed overlapping maars and tuff cones along the western and northern slopes of the volcano. From the oldest to the youngest, it is possible to identify the maars of Pantano Secco, Prata Porci, Valle Marciana, Nemi, Ariccia, Laghetto di Giuturna, and Albano, the latter being the most recent centre of volcanic activity. The young Albano maar centre gave rise to a succession of rock-units which, from the lowermost towards the uppermost one, are presently named the Montagnaccio, Coste dei Laghi, Corona del Lago, Cantone, Peperino Albano, Villa Doria, and Albalonga units.
The Via dei Laghi composite lithosome includes all phreatomagmatic and phreatic products related to the mostly eccentric activity that has characterised the Colli Albani since approximately 200 ka (the oldest age available for the products from Ariccia maar; Marra et al. 2003) to the Holocene (5.8±0.1 ka) for the Tavolato succession from the Albano maar. It is a composite lithosome made by several overlapping maars, located along the western and northern slope of the volcano. The maars of Valle Marciana, Pantano Secco, Prata Porci, and Ariccia are monogenetic, whereas Albano (at least 7 eruptions), Laghetto (2 eruptions), and Nemi (2 eruptions) are polygenetic, i.e. made by coalescing craters. The lithosome comprises a series of maars, characterised by gentle slopes, 2–10° inclined, abruptly interrupted by the inner walls of the craters, two of which, Albano and Nemi, presently still host lakes. The Albano maar is the most recent and still active maar, although quiescent (Funiciello et al., 2003). Available age determinations indicate that the recent activity from Albano span from 39Ar/40Ar 45±3 ka to 14C 5.8±0.1 ka. The typical lithofacies is plane-parallel to low-angle cross-stratified, with alternating ash-rich and accretionary- or armored-lapilli-rich layers generally strongly cemented for the zeolitisation of the glass shards, and ash-matrix supported to ash-free, poorly vesicular scoria lapilli beds. Xenoliths of lava, intrusive, and sedimentary carbonate are ubiquitously present, and may form breccia divisions, at proximal locations, i.e. along the inner maar walls. Ash shards generally show blocky shapes. A second typical lithofacies is found mostly ponded within paleovalleys and within craters, where deposits are massive and chaotic, strongly zeolitised, ash-matrix supported, with up to 10–15% of up to metre size blocks of lava, intrusive, and carbonate sedimentary xenoliths. Thicknesses may reach 30 m. This lithofacies isassociated with higher sedimentation rates where topography acted as a sedimentary trap. Phreatomagmatic deposits do not show transition to deposits from purely magmatic phases, like scoria cones or lava flows.

Recent studies (Funiciello et al., 2003, De Benedetti et al., 2008) identified in addition a number of lahar deposits due to intermittent water overflows from the Albano lake, which filled the previous Würmian valley fan around the crater (particularly those toward the north and north-west mountain side) and covered the very last phreatomagmatic deposits from the Albano maar. Such lahars constitute the Tavolato formation, where several individual thin units have been identified (Laurora et al., 2009), the uppermost of which was radiometrically dated 5.8 ka (Giordano et al., 2010). However, stratigraphic and archaeological evidence shows that some of them emplaced even during Roman times (De Benedetti et al., 2008). The lahars of the Tavolato formation represent a chaotic sampling of most if not all eruptive and explosive deposits of the Colli Albani Volcano. All the recent explosive products and derived lahar deposits are characterised by the presence of xenoliths of sedimentary, metamorphic, and magmatic nature.


Numerous mineral localities are now in a protected area (Regional Park of the Castelli Romani), where quarrying and collecting is forbidden.

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List

Mineral list contains entries from the region specified including sub-localities

98 valid minerals. 5 (TL) - type locality of valid minerals. 2 (FRL) - first recorded locality of unapproved mineral/variety/etc. 1 erroneous literature entry.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Rock list contains entries from the region specified including sub-localities

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Aegirine
Formula: NaFe3+Si2O6
Reference: No reference listed
Aegirine var: Fedorovite (FRL)
Formula: NaFe3+Si2O6
Type Locality:
Reference: Viola, Carlo Maria (1899) Mineralogische und petrographische Mitteilungen aus dem Hernikerlande in dem Provinz Rom (Italien). Neues Jahrbuch für Mineralogie, Geologie, und Paeleontologie: Band I: 93-137.
Afwillite
Formula: Ca3(HSiO4)2 · 2H2O
Reference: Caponera, I., Fiori, S., Pucci, R., & Signoretti, E. (2007). I minerali dei Colli Albani. Un aggiornamento sugli ultimi dieci anni di ricerche. Rivista Mineralogica Italiana, 31 (2), 74-91.
'Albite-Anorthite Series'
Allanite-(Ce)
Formula: {CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH)
Reference: Caponera, I., Fiori, S., Pucci, R., & Signoretti, E. (2007). I minerali dei Colli Albani. Un aggiornamento sugli ultimi dieci anni di ricerche. Rivista Mineralogica Italiana, 31 (2), 74-91.
Alunite
Formula: KAl3(SO4)2(OH)6
Reference: Lombardi, G., Mattias, P. (1979): Petrology and mineralogy of the kaolin and alunite mineralizations of Latium (Italy). Geol. Romana, 18, 157-214; Lombardi, G. (1984): Thermal analysis in the investigation of zeolitized and altered volcanics of Latium, Italy. Clay Minerals, 19, 789-801.
'Amphibole Supergroup'
Formula: AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Reference: Zambonini, F. (1903) Amphibol von Cappuccini di Albano. Zeitschrift für Kristallographie, 37, 369-368.
Analcime
Formula: Na(AlSi2O6) · H2O
Andradite
Formula: Ca3Fe3+2(SiO4)3
Localities: Reported from at least 10 localities in this region.
Andradite var: Melanite
Formula: Ca3Fe3+2(SiO4)3
Localities: Reported from at least 8 localities in this region.
'Andradite-Grossular Series'
Reference: Tilley, C.E., and Henry, N.F.M. (1953) Latiumite (sulphatic potassium-calcium-aluminum silicate), a new mineral from Albano, Latium, Italy. Mineralogical Magazine, 30, 39-45;
Anorthite
Formula: Ca(Al2Si2O8)
Anorthite var: Labradorite
Formula: (Ca,Na)[Al(Al,Si)Si2O8]
Reference: Lacroix, A. (1917) Les formes grenues du magma leucitique du volcan laziale. Comptes Rendu hebdomadaires des Séances de l'Académie des Sciences, 165, 1029-1035.
'Apatite'
Formula: Ca5(PO4)3(Cl/F/OH)
Localities: Reported from at least 8 localities in this region.
'Apophyllite'
Aragonite
Formula: CaCO3
Artinite
Formula: Mg2(CO3)(OH)2 · 3H2O
Ashcroftine-(Y)
Formula: K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
Description: Reported without references in Anthony et al. (1995, reprinted 2003). Many specimens of presumed ashcroftine-(Y) submitted for analysis resulted to be amorphous or non-crystalline (see http://forum.amiminerals.it/viewtopic.php?t=6071). According to Carlini & Signoretti (2018) the lilac, brown or creamy interlaced acicular crystals or felted masses incorrectly attributed in the past by some collectors to ashcroftine-(Y) are referable to more or less altered terms of the ludwigite-vonsenite series.
Reference: Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (1995, reprinted 2003) Handbook of mineralogy. Volume II. Silica, silicates. Part 1. The Mineralogical Society of America, http://www.handbookofmineralogy.org/pdfs/ashcroftine-(Y).pdf; http://forum.amiminerals.it/viewtopic.php?t=6071; Carlini, R., and Signoretti, E. (2018) Il Lazio classico: le cave di leucitite della provincia di Roma (Vallerano, Laghetto e Osa). Fossils & Minerals, 4, 24-53.
Atacamite ?
Formula: Cu2(OH)3Cl
Reference: Liotti, L. (1995) I minerali del complesso vulcanico dei Colli Albani. Seconda parte. Rivista Mineralogica Italiana, 18, 1 (1-1995), 55-70.
Augite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Localities: Reported from at least 9 localities in this region.
Augite var: Fassaite
Formula: (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Baddeleyite
Formula: ZrO2
Baryte
Formula: BaSO4
'Biotite'
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Localities: Reported from at least 10 localities in this region.
Britholite-(Ce)
Formula: (Ce,Ca)5(SiO4)3OH
Reference: Federico, M., Peccerillo, A., (2002): Mineral chemistry and petrogenesis of granular ejecta from the Alban Hills volcano, Mineralogy and Petrology, Vol 74, 223-252
Cahnite
Formula: Ca2[B(OH)4](AsO4)
Reference: Embrey, P.G. (1960) Cahnite from Capo di Bove, Rome. Mineralogical Magazine, 32, 666-668.
Calcite
Formula: CaCO3
Localities: Reported from at least 10 localities in this region.
'Chabazite'
Chabazite-K
Formula: (K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Chabazite-Sr
Formula: Sr2[Al2Si4O12]2 · 12H2O
Reference: Ch. Robert : "Barian phillipsite and strontian chabazite from the Plateau des Coirons, Ardèche, France", Bull. Minéral., 1988, 111, pp. 671-677, France.
Chromite
Formula: Fe2+Cr3+2O4
Description: Mg rich; as inclusions in olivine.
Reference: Boari, E., Avanzinelli, R., Melluso, L., Giordano, G., Mattei, M., De Benedetti, A.A., Morra, V., and Conticelli, S. (2009) Isotope geochemistry (Sr–Nd–Pb) and petrogenesis of leucite-bearing volcanic rocks from “Colli Albani” volcano, Roman Magmatic Province, Central Italy: inferences on volcano evolution and magma genesis. Bulletin of Volcanology, 71, 9, 977-1005.
'Clinopyroxene Subgroup'
Copper
Formula: Cu
Cordierite
Formula: (Mg,Fe)2Al3(AlSi5O18)
Reference: Pinarelli, L. (1987): Genetic and evolutive models of Tolfa-Cerveteri-Manziana volcanic complex (Italy): geochemical and petrological evidences. Rend. Soc. Ital. Mineral. Petrol., 42, 312-313.
Cuprite
Formula: Cu2O
Reference: Caponera, I., Fiori, S., Pucci, R., & Signoretti, E. (2007). I minerali dei Colli Albani. Un aggiornamento sugli ultimi dieci anni di ricerche. Rivista Mineralogica Italiana, 31 (2), 74-91.
Cuspidine
Formula: Ca4(Si2O7)(F,OH)2
Danburite
Formula: CaB2Si2O8
Reference: Caponera, I., Fiori, S., Pucci, R., & Signoretti, E. (2007). I minerali dei Colli Albani. Un aggiornamento sugli ultimi dieci anni di ricerche. Rivista Mineralogica Italiana, 31 (2), 74-91.
Dickite
Formula: Al2(Si2O5)(OH)4
Reference: Lombardi, G., Mattias, P. (1979): Petrology and mineralogy of the kaolin and alunite mineralizations of Latium (Italy). Geol. Romana, 18, 157-214; Lombardi, G. (1984): Thermal analysis in the investigation of zeolitized and altered volcanics of Latium, Italy. Clay Minerals, 19, 789-801.
Diopside
Formula: CaMgSi2O6
'Diopside-Hedenbergite Series'
Ekanite
Formula: Ca2ThSi8O20
Ettringite
Formula: Ca6Al2(SO4)3(OH)12 · 26H2O
'Fayalite-Forsterite Series'
Localities: Reported from at least 6 localities in this region.
Fluoborite
Formula: Mg3(BO3)(F,OH)3
Fluorapatite
Formula: Ca5(PO4)3F
Fluorite
Formula: CaF2
Fluorophlogopite
Formula: KMg3(AlSi3O10)(F,OH)2
Reference: Boari, E., Avanzinelli, R., Melluso, L., Giordano, G., Mattei, M., De Benedetti, A.A., Morra, V., and Conticelli, S. (2009) Isotope geochemistry (Sr–Nd–Pb) and petrogenesis of leucite-bearing volcanic rocks from “Colli Albani” volcano, Roman Magmatic Province, Central Italy: inferences on volcano evolution and magma genesis. Bulletin of Volcanology, 71, 9, 977-1005.
Forsterite
Formula: Mg2SiO4
Franzinite
Formula: (Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
Galena
Formula: PbS
Description: Erroneously identified as lead in Caponera I., Fiori S., Pucci R., 2003. Fluoborite, piombo nativo, richterite ed altri interessanti ritrovamenti nei Colli Albani. Il Cercapietre, 1-2.
Reference: Caponera, I., Fiori, S., Pucci, R., & Signoretti, E. (2007). I minerali dei Colli Albani. Un aggiornamento sugli ultimi dieci anni di ricerche. Rivista Mineralogica Italiana, 31 (2), 74-91.
'Garnet Group'
Formula: X3Z2(SiO4)3
Reference: Pinarelli, L. (1987): Genetic and evolutive models of Tolfa-Cerveteri-Manziana volcanic complex (Italy): geochemical and petrological evidences. Rend. Soc. Ital. Mineral. Petrol., 42, 312-313.
Geikielite
Formula: MgTiO3
Reference: Caponera, I., Fiori, S., Pucci, R., & Signoretti, E. (2007). I minerali dei Colli Albani. Un aggiornamento sugli ultimi dieci anni di ricerche. Rivista Mineralogica Italiana, 31 (2), 74-91.
'Gismondine' (FRL)
Localities: Reported from at least 6 localities in this region.
Reference: Marignac, C. (1845) Notices minéralogiques: Gismondine et phillipsite. Annales de chimie et physique, 3ème série, 14, 41-47. [This article provides quite realiable chemical data on gismondine and phillipsite-K from Capo di Bove. However, Marignac attributed the two studied minerals to Vesuvius and only later Rose, Des Cloizeaux and vom Rath drew attention to the locality misidentification]; Caglioti, V. (1927) Ricerche su alcune zeoliti delle leucititi dei dintorni di Roma: la gismondite di Capo di Bove e la pseudophillipsite di Acquacetosa. Rendiconto della Reale Accademia di scienze fisiche e matematiche, Napoli, serie 3, 33, 163-177. NJMM (1990), 467
Gismondine-Ca
Formula: CaAl2Si2O8 · 4H2O
'Glass'
Reference: Giordano, G., De Benedetti, A.A., Diana, A., Diano, G., Esposito, A., Fabbri, M., et al. (2010) Stratigraphy, volcano tectonics and evolution of the Colli Albani volcanic field. In: Funicello,R., and Giordano, G. (eds.), The Colli Albani Volcano. Special Publications of IAVCEI, Volume 3. The Geological Society Publishing House, Bath, UK, pages 43-97.
Gonnardite
Formula: (Na,Ca)2(Si,Al)5O10 · 3H2O
Reference: Mineralogical Magazine 1956 31 : 265-271
Götzenite
Formula: NaCa6Ti(Si2O7)2OF3
Reference: in the collection of Christof Schäfer
Grossular
Formula: Ca3Al2(SiO4)3
'Guarinite'
Formula: (Na, Ca, Zr, Si, F, O)
Gypsum
Formula: CaSO4 · 2H2O
Reference: Caponera, I., Fiori, S., Pucci, R., & Signoretti, E. (2007). I minerali dei Colli Albani. Un aggiornamento sugli ultimi dieci anni di ricerche. Rivista Mineralogica Italiana, 31 (2), 74-91.
Halloysite-10Å
Formula: Al2Si2O5(OH)4 · 2H2O
Reference: Lombardi, G., Mattias, P. (1979): Petrology and mineralogy of the kaolin and alunite mineralizations of Latium (Italy). Geol. Romana, 18, 157-214; Lombardi, G. (1984): Thermal analysis in the investigation of zeolitized and altered volcanics of Latium, Italy. Clay Minerals, 19, 789-801.
Halloysite-7Å
Formula: Al2(Si2O5)(OH)4
Reference: Lombardi, G., Mattias, P. (1979): Petrology and mineralogy of the kaolin and alunite mineralizations of Latium (Italy). Geol. Romana, 18, 157-214; Lombardi, G. (1984): Thermal analysis in the investigation of zeolitized and altered volcanics of Latium, Italy. Clay Minerals, 19, 789-801.
Harkerite
Formula: Ca12Mg4Al(BO3)3(SiO4)4(CO3)5 · H2O
Hastingsite
Formula: {Na}{Ca2}{Fe2+4Fe3+}(Al2Si6O22)(OH)2
Reference: Federico, M., Peccerillo, A., (2002): Mineral chemistry and petrogenesis of granular ejecta from the Alban Hills volcano, Mineralogy and Petrology, Vol 74, 223-252
Haüyne (TL)
Formula: (Na,K)3(Ca,Na)(Al3Si3O12)(SO4,S,Cl)
Localities: Reported from at least 8 localities in this region.
Reference: Gismondi, C.G. (1803) Osservazioni geognostiche sopra i contorni del lago di Nemi. Memoria letta all'accademia de' Lincei il dì 2 Giugno 1803 (published in full from the original manuscript in: Il Cercapietre, Notiziario del Gruppo Mineralogico Romano, 1998, 59-67); Bruun-Neergard, T.C. (1807) De de la Haüyne, Nouvelle substance minérale. Journal des Mines, 21, premier semestre 1807, 365-380; Bruun-Neergard, T.C. (1807) Ueber den Hauyn (la Hauyne), eine neue mineralische Substanz. Journal für die Chemie, Physik und Mineralogie, 4, 417-429; Mottana, A., Bellatreccia, F., and Della Ventura, G. (2008) Mineralogia di Roma e della sua campagna. The minerals of Rome and of the surrounding areas. In: Funiciello, R., Praturlon, A., and Giordano G. (eds.), La geologia di Roma dal centro storico alla periferia. Memorie Descrittive della Carta Geologica d'Italia, 80, 247-271; Ciriotti, M.E., Fascio, L., and Pasero, M. (2009) Italian type minerals. Edizioni Plus – Università di Pisa, Pisa, 357 pp.; Nasti, V. (2009) L'olotipo della haüyna. Il Cercapietre, 1-2/2009, 16-43.
Hedenbergite
Formula: CaFe2+Si2O6
Reference: Federico, M., Peccerillo, A., (2002): Mineral chemistry and petrogenesis of granular ejecta from the Alban Hills volcano, Mineralogy and Petrology, Vol 74, 223-252
'Hellandite'
Reference: Caponera, I., Fiori, S., Pucci, R., & Signoretti, E. (2007). I minerali dei Colli Albani. Un aggiornamento sugli ultimi dieci anni di ricerche. Rivista Mineralogica Italiana, 31 (2), 74-91.
Hercynite
Formula: Fe2+Al2O4
Reference: No reference listed
'Hornblende'
Hydromagnesite
Formula: Mg5(CO3)4(OH)2 · 4H2O
Kaliophilite
Formula: KAlSiO4
Kalsilite
Formula: KAlSiO4
Reference: AA. VV., 1996. Collezionare minerali. Hobby & Work.
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: Lombardi, G., Mattias, P. (1979): Petrology and mineralogy of the kaolin and alunite mineralizations of Latium (Italy). Geol. Romana, 18, 157-214; Lombardi, G. (1984): Thermal analysis in the investigation of zeolitized and altered volcanics of Latium, Italy. Clay Minerals, 19, 789-801.
Kirschsteinite
Formula: CaFe2+SiO4
Reference: Melluso, L.; Conticelli, S.; de' Gennaro, R. (2010): Kirschsteinite in the Capo di Bove melilite leucitite lava. Mineralogical Magazine, 74, 887-902.
Larnite
Formula: Ca2SiO4
Reference: Federico, M., Peccerillo, A., (2002): Mineral chemistry and petrogenesis of granular ejecta from the Alban Hills volcano, Mineralogy and Petrology, Vol 74, 223-252
Latiumite (TL)
Formula: (Ca,K)4(Si,Al)5O11(SO4,CO3)
Reference: Tilley, C.E., and Henry, N.F.M. (1953) Latiumite (sulphatic potassium-calcium-aluminum silicate), a new mineral from Albano, Latium, Italy. Mineralogical Magazine, 30, 39-45; Mottana, A., Bellatreccia, F., and Della Ventura, G. (2008) Mineralogia di Roma e della sua campagna. The minerals of Rome and of the surrounding areas. In: Funiciello, R., Praturlon, A., and Giordano G. (eds.), La geologia di Roma dal centro storico alla periferia. Memorie Descrittive della Carta Geologica d'Italia, 80, 247-271; Ciriotti, M.E., Fascio, L., and Pasero, M. (2009) Italian type minerals. Edizioni Plus – Università di Pisa, Pisa, 357 pp.
Lazurite
Formula: Na6Ca2(Al6Si6O24)(SO4,S,S2,S3,Cl,OH)2
Lead
Formula: Pb
Reference: Caponera, I., Fiori S., Pucci R. (2003): Fluoborite, piombo nativo, richterite ed altri interessanti ritrovamenti nei Colli Albani. Il Cercapietre, 1-2, 3-13.
Leucite
Formula: K(AlSi2O6)
Localities: Reported from at least 11 localities in this region.
Ludwigite
Formula: Mg2Fe3+(BO3)O2
Reference: Bachechi, F., Federico, M., and Fornaseri, M. (1966 a) Prima segnalazione di ludwigite e di magnesioferrite nelle geodi delle "pozzolane nere" di Corcolle (regione vulcanica dei Colli Albani). Periodico di Mineralogia, 35, 717; Bachechi, F., Federico, M., and Fornaseri, M. (1966 b) La ludwigite e i minerali che l'accompagnano nelle geodi delle "pozzolane nere" di Corcolle (Tivoli, Colli Albani). Periodico di Mineralogia, 35, 975-1022; Del Caldo, A. (1971) Località mineralogiche consigliate. Le vulcaniti laziali. 2) Minerali della pozzolana romana. Notizie del Guppo Mineralogico Lombardo, 2, 1 (marzo 1971), 9; Del Caldo, A., Moro, C., Gramaccioli, C.M., and Boscardin, M. (1973) Guida ai minerali. Fratelli Fabbri Editori, Milano, 208 pp.
Maghemite
Formula: (Fe3+0.670.33)Fe3+2O4
Magnesioferrite
Formula: MgFe3+2O4
Magnesio-hastingsite
Formula: {Na}{Ca2}{Mg4Fe3+}(Al2Si6O22)(OH)2
Reference: Federico, M., Peccerillo, A., (2002): Mineral chemistry and petrogenesis of granular ejecta from the Alban Hills volcano, Mineralogy and Petrology, Vol 74, 223-252
Magnetite
Formula: Fe2+Fe3+2O4
Localities: Reported from at least 12 localities in this region.
'Melilite Group'
Formula: Ca2M(XSiO7)
Localities: Reported from at least 10 localities in this region.
Mesolite
Formula: Na2Ca2Si9Al6O30 · 8H2O
Reference: No reference listed
'Mica Group'
Monticellite
Formula: CaMgSiO4
Reference: Orlandi P. - (1975) La monticellite di Albano. Periodico di mineralogia – Roma, pp. 145-149
Mordenite
Formula: (Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Reference: Giovanni Scapin Collection
Natrolite
Formula: Na2Al2Si3O10 · 2H2O
Description: Found only once in 1975, as white sericeous prisms to 3 mm in length, in a veinlet without other zeolites. Associated with fluorapatite, calcite, and nepheline.
Reference: Carlini, R., and Signoretti, E. (2018) Il Lazio classico: le cave di leucitite della provincia di Roma (Vallerano, Laghetto e Osa). Fossils & Minerals, 4, 24-53.
Nepheline
Formula: Na3K(Al4Si4O16)
Localities: Reported from at least 11 localities in this region.
Nosean
Formula: Na8(Al6Si6O24)(SO4) · H2O
Reference: Federico, M., Peccerillo, A., (2002): Mineral chemistry and petrogenesis of granular ejecta from the Alban Hills volcano, Mineralogy and Petrology, Vol 74, 223-252
Opal
Formula: SiO2 · nH2O
Periclase
Formula: MgO
Perovskite
Formula: CaTiO3
'Phillipsite'
Phillipsite-K (TL)
Formula: (K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
Reference: Marignac, C. (1845) Notices minéralogiques: Gismondine et phillipsite. Annales de chimie et physique, 3ème série, 14, 41-47. [This article provides quite realiable chemical data on gismondine and phillipsite-K from Capo di Bove. However, Marignac attributed the two studied minerals to Vesuvius and only later Rose, Des Cloizeaux and vom Rath drew attention to the locality misidentification]; vom Rath, G. (1866) Mineralogisch-geognostische Fragmente aus Italien. Erster Theil. II. Das Albaner Gebirge. Zeitschrift der Deutschen Geologischen Gesellschaft, Bd. 18, 3, 510-561; The Canadian Mineralogist Vol. 35, pp. 1571-1606 (1997)
Phlogopite
Formula: KMg3(AlSi3O10)(OH)2
Pyrite
Formula: FeS2
Reference: De Michele, V. (1974). Guida mineralogica d'Italia. Istituto Geografico De Agostini, Novara, 2 vol
'Pyrochlore Group'
Formula: A2Nb2(O,OH)6Z
'Pyrochlore Group var: Uranpyrochlore (of Hogarth 1977)'
Formula: (Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Reference: Voltaggio M., Di Lisa G.A. (1995) - 230Th dating of uranpyrochlore in pyroclastic ejecta from the last products of explosive final activity of the Alban Hills volcanic complex (abs.). Periodico di Mineralogia, Roma, pp. 291-292
'Pyroxene Group'
Pyrrhotite
Formula: Fe7S8
Quartz
Formula: SiO2
Reference: Pinarelli, L. (1987): Genetic and evolutive models of Tolfa-Cerveteri-Manziana volcanic complex (Italy): geochemical and petrological evidences. Rend. Soc. Ital. Mineral. Petrol., 42, 312-313.
Richterite
Formula: {Na}{NaCa}{Mg5}(Si8O22)(OH)2
Sanidine
Formula: K(AlSi3O8)
Localities: Reported from at least 6 localities in this region.
Sodalite
Formula: Na8(Al6Si6O24)Cl2
Spadaite (TL)
Formula: MgSiO2(OH)2 · H2O (?)
Type Locality:
Reference: Gelehrte Anz. München (1863) 17, 945
Sphalerite
Formula: ZnS
Spinel
Formula: MgAl2O4
Stillwellite-(Ce)
Formula: (Ce,La,Ca)BSiO5
Reference: Caponera, I., Fiori, S., Pucci, R., & Signoretti, E. (2007). I minerali dei Colli Albani. Un aggiornamento sugli ultimi dieci anni di ricerche. Rivista Mineralogica Italiana, 31 (2), 74-91.
Thaumasite
Formula: Ca3(SO4)[Si(OH)6](CO3) · 12H2O
Reference: Caponera, I., Fiori, S., Pucci, R., & Signoretti, E. (2007). I minerali dei Colli Albani. Un aggiornamento sugli ultimi dieci anni di ricerche. Rivista Mineralogica Italiana, 31 (2), 74-91.
'Thomsonite'
Thomsonite-Ca
Formula: NaCa2[Al5Si5O20] · 6H2O
Thorite
Formula: Th(SiO4)
Reference: Caponera, I., Fiori, S., Pucci, R., & Signoretti, E. (2007). I minerali dei Colli Albani. Un aggiornamento sugli ultimi dieci anni di ricerche. Rivista Mineralogica Italiana, 31 (2), 74-91.
Titanite
Formula: CaTi(SiO4)O
Tobermorite
Formula: [Ca4Si6O17 · 2H2O]·(Ca·3H2O)
Reference: Caponera, I., Fiori, S., Pucci, R., & Signoretti, E. (2007). I minerali dei Colli Albani. Un aggiornamento sugli ultimi dieci anni di ricerche. Rivista Mineralogica Italiana, 31 (2), 74-91.
Vertumnite
Formula: Ca4Al4Si4O6(OH)24 · 3H2O
Reference: Caponera, I., Fiori, S., Pucci, R., & Signoretti, E. (2007). I minerali dei Colli Albani. Un aggiornamento sugli ultimi dieci anni di ricerche. Rivista Mineralogica Italiana, 31 (2), 74-91.
Vesuvianite
Formula: Ca19Fe3+Al4(Al6Mg2)(☐4)☐[Si2O7]4[(SiO4)10]O(OH)9
Vicanite-(Ce)
Formula: (Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
Reference: Caponera, I., Fiori, S., Pucci, R., & Signoretti, E. (2007). I minerali dei Colli Albani. Un aggiornamento sugli ultimi dieci anni di ricerche. Rivista Mineralogica Italiana, 31 (2), 74-91.
Vishnevite
Formula: (Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
Reference: • Bellatreccia, F. & Della Ventura, G. (2006): La vishnevite [Na6(SO4)][Na2(H20)2](Si6A16024). Il Cercapietre, 2/2006, 29-37.
Vonsenite
Formula: Fe2+2Fe3+(BO3)O2
Wiluite
Formula: Ca19MgAl4(Al,Mg)8(B,☐)4☐[Si2O7]4[(SiO4)10]O(O,OH)9
Wollastonite (TL)
Formula: CaSiO3
Reference: Leman J (1818) Meionite. Nouveau Dictionnaire d'Histoire Naturelle 20, 28-31. Campmas P J L (1818) Chapitre CX. Des substances cristallisées renfermées dans les laves. in Institution Géologiques par Scipion Breislak, Volume 3, (Milan) 192-215. von Kobell F (1843) Ueber den Spadait, eine neue Mineral-species, und über den Wollastonit von Capo di bove. Gelehrte Anzeigen der Königlich Bayerischen Akademie der Wissenschaften 17, 945-950. von Kobell F (1843) Ueber den Spadaït, eine neue Mineralspecies, und über den Wollastonit von Capo di bove. Journal für Praktische Chemie 30, 467-471. Christof Schäfer
Zircon
Formula: Zr(SiO4)
Zirconolite
Formula: CaZrTi2O7
Reference: Caponera, I., Fiori, S., Pucci, R., & Signoretti, E. (2007). I minerali dei Colli Albani. Un aggiornamento sugli ultimi dieci anni di ricerche. Rivista Mineralogica Italiana, 31 (2), 74-91.

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Copper1.AA.05Cu
Lead1.AA.05Pb
Group 2 - Sulphides and Sulfosalts
Galena2.CD.10PbS
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe7S8
Sphalerite2.CB.05aZnS
Group 3 - Halides
Atacamite ?3.DA.10aCu2(OH)3Cl
Fluorite3.AB.25CaF2
Group 4 - Oxides and Hydroxides
Baddeleyite4.DE.35ZrO2
Chromite4.BB.05Fe2+Cr3+2O4
Cuprite4.AA.10Cu2O
Geikielite4.CB.05MgTiO3
Hercynite4.BB.05Fe2+Al2O4
Maghemite4.BB.15(Fe3+0.670.33)Fe3+2O4
Magnesioferrite4.BB.05MgFe3+2O4
Magnetite4.BB.05Fe2+Fe3+2O4
Opal4.DA.10SiO2 · nH2O
Periclase4.AB.25MgO
Perovskite4.CC.30CaTiO3
'Pyrochlore Group'4.00.A2Nb2(O,OH)6Z
'var: Uranpyrochlore (of Hogarth 1977)'4.00.(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Quartz4.DA.05SiO2
Spinel4.BB.05MgAl2O4
Zirconolite4.DH.30CaZrTi2O7
Group 5 - Nitrates and Carbonates
Aragonite5.AB.15CaCO3
Artinite5.DA.10Mg2(CO3)(OH)2 · 3H2O
Calcite5.AB.05CaCO3
Hydromagnesite5.DA.05Mg5(CO3)4(OH)2 · 4H2O
Group 6 - Borates
Cahnite6.AC.70Ca2[B(OH)4](AsO4)
Fluoborite6.AB.50Mg3(BO3)(F,OH)3
Harkerite6.AB.70Ca12Mg4Al(BO3)3(SiO4)4(CO3)5 · H2O
Ludwigite6.AB.30Mg2Fe3+(BO3)O2
Vonsenite6.AB.30Fe2+2Fe3+(BO3)O2
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Alunite7.BC.10KAl3(SO4)2(OH)6
Baryte7.AD.35BaSO4
Ettringite7.DG.15Ca6Al2(SO4)3(OH)12 · 26H2O
Gypsum7.CD.40CaSO4 · 2H2O
Thaumasite7.DG.15Ca3(SO4)[Si(OH)6](CO3) · 12H2O
Group 8 - Phosphates, Arsenates and Vanadates
Fluorapatite8.BN.05Ca5(PO4)3F
Group 9 - Silicates
Aegirine9.DA.25NaFe3+Si2O6
var: Fedorovite (TL)9.DA.25NaFe3+Si2O6
Afwillite9.AG.75Ca3(HSiO4)2 · 2H2O
Allanite-(Ce)9.BG.05b{CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH)
Analcime9.GB.05Na(AlSi2O6) · H2O
Andradite9.AD.25Ca3Fe3+2(SiO4)3
var: Melanite9.AD.25Ca3Fe3+2(SiO4)3
Anorthite9.FA.35Ca(Al2Si2O8)
var: Labradorite9.FA.35(Ca,Na)[Al(Al,Si)Si2O8]
Ashcroftine-(Y) ?9.DN.15K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
Augite9.DA.15(CaxMgyFez)(Mgy1Fez1)Si2O6
var: Fassaite9.DA.15(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Britholite-(Ce)9.AH.25(Ce,Ca)5(SiO4)3OH
Chabazite-K9.GD.10(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Chabazite-Sr9.GD.10Sr2[Al2Si4O12]2 · 12H2O
Cordierite9.CJ.10(Mg,Fe)2Al3(AlSi5O18)
Cuspidine9.BE.17Ca4(Si2O7)(F,OH)2
Danburite9.FA.65CaB2Si2O8
Dickite9.ED.05Al2(Si2O5)(OH)4
Diopside9.DA.15CaMgSi2O6
Ekanite9.EA.10Ca2ThSi8O20
Fluorophlogopite9.EC.20KMg3(AlSi3O10)(F,OH)2
Forsterite9.AC.05Mg2SiO4
Franzinite9.FB.05(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
'Gismondine' (TL)9..
Gismondine-Ca9.GC.05CaAl2Si2O8 · 4H2O
Gonnardite9.GA.05(Na,Ca)2(Si,Al)5O10 · 3H2O
Grossular9.AD.25Ca3Al2(SiO4)3
Götzenite9.BE.22NaCa6Ti(Si2O7)2OF3
Halloysite-7Å9.ED.10Al2(Si2O5)(OH)4
Hastingsite9.DE.15{Na}{Ca2}{Fe2+4Fe3+}(Al2Si6O22)(OH)2
Haüyne (TL)9.FB.10(Na,K)3(Ca,Na)(Al3Si3O12)(SO4,S,Cl)
Hedenbergite9.DA.15CaFe2+Si2O6
Kaliophilite9.FA.05KAlSiO4
Kalsilite9.FA.05KAlSiO4
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Kirschsteinite9.AC.05CaFe2+SiO4
Larnite9.AD.05Ca2SiO4
Latiumite (TL)9.EG.45(Ca,K)4(Si,Al)5O11(SO4,CO3)
Lazurite9.FB.10Na6Ca2(Al6Si6O24)(SO4,S,S2,S3,Cl,OH)2
Leucite9.GB.05K(AlSi2O6)
Magnesio-hastingsite9.DE.15{Na}{Ca2}{Mg4Fe3+}(Al2Si6O22)(OH)2
Mesolite9.GA.05Na2Ca2Si9Al6O30 · 8H2O
Monticellite9.AC.10CaMgSiO4
Mordenite9.GD.35(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Natrolite9.GA.05Na2Al2Si3O10 · 2H2O
Nepheline9.FA.05Na3K(Al4Si4O16)
Nosean9.FB.10Na8(Al6Si6O24)(SO4) · H2O
Phillipsite-K (TL)9.GC.10(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
Phlogopite9.EC.20KMg3(AlSi3O10)(OH)2
Richterite9.DE.20{Na}{NaCa}{Mg5}(Si8O22)(OH)2
Sanidine9.FA.30K(AlSi3O8)
Sodalite9.FB.10Na8(Al6Si6O24)Cl2
Spadaite (TL)9.EC.45MgSiO2(OH)2 · H2O (?)
Stillwellite-(Ce)9.AJ.25(Ce,La,Ca)BSiO5
Thomsonite-Ca9.GA.10NaCa2[Al5Si5O20] · 6H2O
Thorite9.AD.30Th(SiO4)
Titanite9.AG.15CaTi(SiO4)O
Tobermorite9.DG.10[Ca4Si6O17 · 2H2O]·(Ca·3H2O)
Vertumnite9.EG.25Ca4Al4Si4O6(OH)24 · 3H2O
Vesuvianite9.BG.35Ca19Fe3+Al4(Al6Mg2)(☐4)☐[Si2O7]4[(SiO4)10]O(OH)9
Vicanite-(Ce)9.AJ.35(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
Vishnevite9.FB.05(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
Wiluite9.BG.35Ca19MgAl4(Al,Mg)8(B,☐)4☐[Si2O7]4[(SiO4)10]O(O,OH)9
Wollastonite (TL)9.DG.05CaSiO3
Zircon9.AD.30Zr(SiO4)
Unclassified Minerals, Rocks, etc.
'Albite-Anorthite Series'-
'Amphibole Supergroup'-AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Andradite-Grossular Series'-
'Apatite'-Ca5(PO4)3(Cl/F/OH)
'Apophyllite'-
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
'Chabazite'-
'Clinopyroxene Subgroup'-
'Diopside-Hedenbergite Series'-
'Fayalite-Forsterite Series'-
'Garnet Group'-X3Z2(SiO4)3
'Glass'-
'Guarinite'-(Na, Ca, Zr, Si, F, O)
Halloysite-10Å-Al2Si2O5(OH)4 · 2H2O
'Hellandite'-
'Hornblende'-
'Melilite Group'-Ca2M(XSiO7)
'Mica Group'-
'Phillipsite'-
'Pyroxene Group'-
'Thomsonite'-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Lead1.1.1.4Pb
Group 2 - SULFIDES
AmXp, with m:p = 1:1
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:2
Pyrite2.12.1.1FeS2
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
AX
Periclase4.2.1.1MgO
A2X3
Geikielite4.3.5.2MgTiO3
Maghemite4.3.7.1(Fe3+0.670.33)Fe3+2O4
Perovskite4.3.3.1CaTiO3
AX2
Baddeleyite4.4.14.1ZrO2
Group 7 - MULTIPLE OXIDES
AB2X4
Chromite7.2.3.3Fe2+Cr3+2O4
Hercynite7.2.1.3Fe2+Al2O4
Magnesioferrite7.2.2.1MgFe3+2O4
Magnetite7.2.2.3Fe2+Fe3+2O4
Spinel7.2.1.1MgAl2O4
Group 8 - MULTIPLE OXIDES CONTAINING NIOBIUM,TANTALUM OR TITANIUM
A2B2O6(O,OH,F)
'Pyrochlore Group'8.2.1.1A2Nb2(O,OH)6Z
'var: Uranpyrochlore (of Hogarth 1977)'8.2.1.7(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Zirconolite8.2.5.5CaZrTi2O7
Group 9 - NORMAL HALIDES
AX2
Fluorite9.2.1.1CaF2
Group 10 - OXYHALIDES AND HYDROXYHALIDES
A2(O,OH)3Xq
Atacamite ?10.1.1.1Cu2(OH)3Cl
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Group 16b - HYDRATED CARBONATES CONTAINING HYDROXYL OR HALOGEN
Artinite16b.3.1.1Mg2(CO3)(OH)2 · 3H2O
Hydromagnesite16b.7.1.1Mg5(CO3)4(OH)2 · 4H2O
Group 17 - COMPOUND CARBONATES
Miscellaneous
Harkerite17.1.9.1Ca12Mg4Al(BO3)3(SiO4)4(CO3)5 · H2O
Group 24 - ANHYDROUS BORATES
A2BO2[XO3]
Ludwigite24.2.1.1Mg2Fe3+(BO3)O2
Vonsenite24.2.1.2Fe2+2Fe3+(BO3)O2
Group 25 - ANHYDROUS BORATES CONTAINING HYDROXYL OR HALOGEN
Monoborates
Fluoborite25.1.2.1Mg3(BO3)(F,OH)3
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Baryte28.3.1.1BaSO4
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Gypsum29.6.3.1CaSO4 · 2H2O
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Alunite30.2.4.1KAl3(SO4)2(OH)6
Group 31 - HYDRATED SULFATES CONTAINING HYDROXYL OR HALOGEN
Miscellaneous
Ettringite31.10.2.1Ca6Al2(SO4)3(OH)12 · 26H2O
Group 32 - COMPOUND SULFATES
Hydrated Compound Sulfates containing Hydroxyl or Halogen
Thaumasite32.4.4.4Ca3(SO4)[Si(OH)6](CO3) · 12H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
A5(XO4)3Zq
Fluorapatite41.8.1.1Ca5(PO4)3F
Group 43 - COMPOUND PHOSPHATES, ETC.
Anhydrous Compound Phosphates, etc·, Containing Hydroxyl or Halogen
Cahnite43.4.4.1Ca2[B(OH)4](AsO4)
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with all cations in octahedral [6] coordination
Forsterite51.3.1.2Mg2SiO4
Kirschsteinite51.3.2.2CaFe2+SiO4
Monticellite51.3.2.1CaMgSiO4
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Andradite51.4.3b.1Ca3Fe3+2(SiO4)3
Grossular51.4.3b.2Ca3Al2(SiO4)3
Insular SiO4 Groups Only with cations in >[6] coordination
Larnite51.5.1.1Ca2SiO4
Thorite51.5.2.3Th(SiO4)
Zircon51.5.2.1Zr(SiO4)
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] and/or >[6] coordination
Afwillite52.4.7.1Ca3(HSiO4)2 · 2H2O
Britholite-(Ce)52.4.9.1(Ce,Ca)5(SiO4)3OH
Titanite52.4.3.1CaTi(SiO4)O
Group 54 - NESOSILICATES Borosilicates and Some Beryllosilicates
Borosilicates and Some Beryllosilicates with B in [4] coordination
Stillwellite-(Ce)54.2.3.2(Ce,La,Ca)BSiO5
Vicanite-(Ce)54.3.1.1(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
Group 56 - SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
Si2O7 Groups and O, OH, F, and H2O with cations in [4] and/or >[4] coordination
Cuspidine56.2.4.3Ca4(Si2O7)(F,OH)2
Götzenite56.2.5.4NaCa6Ti(Si2O7)2OF3
Si2O7 Groups and O, OH, F, and H2O with[Si2O7] with borate groups
Danburite56.3.1.1CaB2Si2O8
Group 58 - SOROSILICATES Insular, Mixed, Single, and Larger Tetrahedral Groups
Insular, Mixed, Single, and Larger Tetrahedral Groups with cations in [6] and higher coordination; single and double groups (n = 1, 2)
Allanite-(Ce)58.2.1a.1{CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH)
Vesuvianite58.2.4.1Ca19Fe3+Al4(Al6Mg2)(☐4)☐[Si2O7]4[(SiO4)10]O(OH)9
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with Al substituted rings
Cordierite61.2.1.1(Mg,Fe)2Al3(AlSi5O18)
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Aegirine65.1.3c.2NaFe3+Si2O6
Augite65.1.3a.3(CaxMgyFez)(Mgy1Fez1)Si2O6
Diopside65.1.3a.1CaMgSi2O6
Hedenbergite65.1.3a.2CaFe2+Si2O6
Single-Width Unbranched Chains, W=1 with chains P=3
Wollastonite (TL)65.2.1.1cCaSiO3
Group 66 - INOSILICATES Double-Width,Unbranched Chains,(W=2)
Amphiboles - Mg-Fe-Mn-Li subgroup
Richterite66.1.3b.9{Na}{NaCa}{Mg5}(Si8O22)(OH)2
Group 70 - INOSILICATES Column or Tube Structures
Column or Tube Structures with balo-silicates
Ashcroftine-(Y) ?70.3.1.1K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
Dickite71.1.1.1Al2(Si2O5)(OH)4
Sheets of 6-membered rings with 2:1 layers
Phlogopite71.2.2b.1KMg3(AlSi3O10)(OH)2
Group 72 - PHYLLOSILICATES Two-Dimensional Infinite Sheets with Other Than Six-Membered Rings
Two-Dimensional Infinite Sheets with Other Than Six-Membered Rings with 4-membered rings
Ekanite72.1.1.1Ca2ThSi8O20
Two-Dimensional Infinite Sheets with Other Than Six-Membered Rings with 3-, 4-, or 5-membered rings and 8-membered rings
Tobermorite72.3.2.1[Ca4Si6O17 · 2H2O]·(Ca·3H2O)
Group 73 - PHYLLOSILICATES Condensed Tetrahedral Sheets
Condensed Tetrahedral Sheets with double layers
Latiumite (TL)73.1.2.1(Ca,K)4(Si,Al)5O11(SO4,CO3)
Vertumnite73.1.6.1Ca4Al4Si4O6(OH)24 · 3H2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Si Tetrahedral Frameworks - SiO2 with H2O and organics
Opal75.2.1.1SiO2 · nH2O
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Sanidine76.1.1.2K(AlSi3O8)
Al-Si Framework Feldspathoids and related species
Franzinite76.2.5.6(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
Haüyne (TL)76.2.3.3(Na,K)3(Ca,Na)(Al3Si3O12)(SO4,S,Cl)
Kaliophilite76.2.1.5KAlSiO4
Kalsilite76.2.1.1KAlSiO4
Lazurite76.2.3.4Na6Ca2(Al6Si6O24)(SO4,S,S2,S3,Cl,OH)2
Leucite76.2.2.1K(AlSi2O6)
Nepheline76.2.1.2Na3K(Al4Si4O16)
Nosean76.2.3.2Na8(Al6Si6O24)(SO4) · H2O
Sodalite76.2.3.1Na8(Al6Si6O24)Cl2
Vishnevite76.2.5.15(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
Group 77 - TECTOSILICATES Zeolites
Zeolite group - True zeolites
Analcime77.1.1.1Na(AlSi2O6) · H2O
'Gismondine' (FRL)77.1.3.1
Gonnardite77.1.5.7(Na,Ca)2(Si,Al)5O10 · 3H2O
Mesolite77.1.5.4Na2Ca2Si9Al6O30 · 8H2O
Mordenite77.1.6.1(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Natrolite77.1.5.1Na2Al2Si3O10 · 2H2O
Group 78 - Unclassified Silicates
Spadaite (TL)78.7.14.1MgSiO2(OH)2 · H2O (?)
Unclassified Minerals, Mixtures, etc.
Aegirine
var: Fedorovite (FRL)
-NaFe3+Si2O6
'Albite-Anorthite Series'-
'Amphibole Supergroup'-AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Andradite
var: Melanite
-Ca3Fe3+2(SiO4)3
'Andradite-Grossular Series'-
Anorthite-Ca(Al2Si2O8)
var: Labradorite-(Ca,Na)[Al(Al,Si)Si2O8]
'Apatite'-Ca5(PO4)3(Cl/F/OH)
'Apophyllite'-
Aragonite-CaCO3
Augite
var: Fassaite
-(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
'Chabazite'-
Chabazite-K-(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Chabazite-Sr-Sr2[Al2Si4O12]2 · 12H2O
'Clinopyroxene Subgroup'-
'Diopside-Hedenbergite Series'-
'Fayalite-Forsterite Series'-
Fluorophlogopite-KMg3(AlSi3O10)(F,OH)2
'Garnet Group'-X3Z2(SiO4)3
Gismondine-Ca-CaAl2Si2O8 · 4H2O
'Glass'-
'Guarinite'-(Na, Ca, Zr, Si, F, O)
Halloysite-10Å-Al2Si2O5(OH)4 · 2H2O
Halloysite-7Å-Al2(Si2O5)(OH)4
Hastingsite-{Na}{Ca2}{Fe2+4Fe3+}(Al2Si6O22)(OH)2
'Hellandite'-
'Hornblende'-
Kaolinite-Al2(Si2O5)(OH)4
Magnesio-hastingsite-{Na}{Ca2}{Mg4Fe3+}(Al2Si6O22)(OH)2
'Melilite Group'-Ca2M(XSiO7)
'Mica Group'-
'Phillipsite'-
Phillipsite-K (TL)-(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
'Pyroxene Group'-
'Thomsonite'-
Thomsonite-Ca-NaCa2[Al5Si5O20] · 6H2O
Wiluite-Ca19MgAl4(Al,Mg)8(B,☐)4☐[Si2O7]4[(SiO4)10]O(O,OH)9

List of minerals for each chemical element

HHydrogen
H Phillipsite-K(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
H SpadaiteMgSiO2(OH)2 · H2O (?)
H Franzinite(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
H FluoboriteMg3(BO3)(F,OH)3
H BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
H VesuvianiteCa19Fe3+Al4(Al6Mg2)(☐4)☐[Si2O7]4[(SiO4)10]O(OH)9
H HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
H PhlogopiteKMg3(AlSi3O10)(OH)2
H ApatiteCa5(PO4)3(Cl/F/OH)
H CuspidineCa4(Si2O7)(F,OH)2
H OpalSiO2 · nH2O
H HarkeriteCa12Mg4Al(BO3)3(SiO4)4(CO3)5 · H2O
H Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
H NatroliteNa2Al2Si3O10 · 2H2O
H Thomsonite-CaNaCa2[Al5Si5O20] · 6H2O
H FluorophlogopiteKMg3(AlSi3O10)(F,OH)2
H AnalcimeNa(AlSi2O6) · H2O
H Gismondine-CaCaAl2Si2O8 · 4H2O
H EttringiteCa6Al2(SO4)3(OH)12 · 26H2O
H Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
H MesoliteNa2Ca2Si9Al6O30 · 8H2O
H WiluiteCa19MgAl4(Al,Mg)8(B,☐)4☐[Si2O7]4[(SiO4)10]O(O,OH)9
H LazuriteNa6Ca2(Al6Si6O24)(SO4,S,S2,S3,Cl,OH)2
H Pyrochlore GroupA2Nb2(O,OH)6Z
H Richterite{Na}{NaCa}{Mg5}(Si8O22)(OH)2
H ArtiniteMg2(CO3)(OH)2 · 3H2O
H Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
H CahniteCa2[B(OH)4](AsO4)
H Chabazite-SrSr2[Al2Si4O12]2 · 12H2O
H Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
H AluniteKAl3(SO4)2(OH)6
H KaoliniteAl2(Si2O5)(OH)4
H DickiteAl2(Si2O5)(OH)4
H Halloysite-7ÅAl2(Si2O5)(OH)4
H Halloysite-10ÅAl2Si2O5(OH)4 · 2H2O
H Pyrochlore Group (var: Uranpyrochlore (of Hogarth 1977))(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
H Hastingsite{Na}{Ca2}{Fe42+Fe3+}(Al2Si6O22)(OH)2
H NoseanNa8(Al6Si6O24)(SO4) · H2O
H Magnesio-hastingsite{Na}{Ca2}{Mg4Fe3+}(Al2Si6O22)(OH)2
H Britholite-(Ce)(Ce,Ca)5(SiO4)3OH
H Vishnevite(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
H Allanite-(Ce){CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH)
H AfwilliteCa3(HSiO4)2 · 2H2O
H GypsumCaSO4 · 2H2O
H ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
H Tobermorite[Ca4Si6O17 · 2H2O]·(Ca·3H2O)
H VertumniteCa4Al4Si4O6(OH)24 · 3H2O
H AtacamiteCu2(OH)3Cl
H Ashcroftine-(Y)K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
BBoron
B FluoboriteMg3(BO3)(F,OH)3
B HarkeriteCa12Mg4Al(BO3)3(SiO4)4(CO3)5 · H2O
B VonseniteFe22+Fe3+(BO3)O2
B LudwigiteMg2Fe3+(BO3)O2
B WiluiteCa19MgAl4(Al,Mg)8(B,☐)4☐[Si2O7]4[(SiO4)10]O(O,OH)9
B CahniteCa2[B(OH)4](AsO4)
B DanburiteCaB2Si2O8
B Stillwellite-(Ce)(Ce,La,Ca)BSiO5
B Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
CCarbon
C Latiumite(Ca,K)4(Si,Al)5O11(SO4,CO3)
C CalciteCaCO3
C HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
C HarkeriteCa12Mg4Al(BO3)3(SiO4)4(CO3)5 · H2O
C AragoniteCaCO3
C ArtiniteMg2(CO3)(OH)2 · 3H2O
C Vishnevite(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
C ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
C Ashcroftine-(Y)K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
OOxygen
O Latiumite(Ca,K)4(Si,Al)5O11(SO4,CO3)
O Haüyne(Na,K)3(Ca,Na)(Al3Si3O12)(SO4,S,Cl)
O Phillipsite-K(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
O SpadaiteMgSiO2(OH)2 · H2O (?)
O WollastoniteCaSiO3
O Aegirine (var: Fedorovite)NaFe3+Si2O6
O Franzinite(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
O FluoboriteMg3(BO3)(F,OH)3
O Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
O Andradite (var: Melanite)Ca3Fe23+(SiO4)3
O LeuciteK(AlSi2O6)
O AndraditeCa3Fe23+(SiO4)3
O BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
O MagnetiteFe2+Fe23+O4
O Anorthite (var: Labradorite)(Ca,Na)[Al(Al,Si)Si2O8]
O ForsteriteMg2SiO4
O NephelineNa3K(Al4Si4O16)
O AnorthiteCa(Al2Si2O8)
O VesuvianiteCa19Fe3+Al4(Al6Mg2)(☐4)☐[Si2O7]4[(SiO4)10]O(OH)9
O CalciteCaCO3
O HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
O PericlaseMgO
O PhlogopiteKMg3(AlSi3O10)(OH)2
O Augite (var: Fassaite)(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
O SpinelMgAl2O4
O SanidineK(AlSi3O8)
O SodaliteNa8(Al6Si6O24)Cl2
O ApatiteCa5(PO4)3(Cl/F/OH)
O GrossularCa3Al2(SiO4)3
O CuspidineCa4(Si2O7)(F,OH)2
O Melilite GroupCa2M(XSiO7)
O OpalSiO2 · nH2O
O TitaniteCaTi(SiO4)O
O HarkeriteCa12Mg4Al(BO3)3(SiO4)4(CO3)5 · H2O
O VonseniteFe22+Fe3+(BO3)O2
O FluorapatiteCa5(PO4)3F
O AragoniteCaCO3
O Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
O NatroliteNa2Al2Si3O10 · 2H2O
O Thomsonite-CaNaCa2[Al5Si5O20] · 6H2O
O FluorophlogopiteKMg3(AlSi3O10)(F,OH)2
O AnalcimeNa(AlSi2O6) · H2O
O Gismondine-CaCaAl2Si2O8 · 4H2O
O BaryteBaSO4
O ChromiteFe2+Cr23+O4
O KaliophiliteKAlSiO4
O LudwigiteMg2Fe3+(BO3)O2
O MagnesioferriteMgFe23+O4
O HercyniteFe2+Al2O4
O PerovskiteCaTiO3
O Maghemite(Fe3+0.670.33)Fe23+O4
O EttringiteCa6Al2(SO4)3(OH)12 · 26H2O
O Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
O DiopsideCaMgSi2O6
O MesoliteNa2Ca2Si9Al6O30 · 8H2O
O WiluiteCa19MgAl4(Al,Mg)8(B,☐)4☐[Si2O7]4[(SiO4)10]O(O,OH)9
O LazuriteNa6Ca2(Al6Si6O24)(SO4,S,S2,S3,Cl,OH)2
O GötzeniteNaCa6Ti(Si2O7)2OF3
O Pyrochlore GroupA2Nb2(O,OH)6Z
O BaddeleyiteZrO2
O Guarinite(Na, Ca, Zr, Si, F, O)
O MonticelliteCaMgSiO4
O EkaniteCa2ThSi8O20
O Richterite{Na}{NaCa}{Mg5}(Si8O22)(OH)2
O ArtiniteMg2(CO3)(OH)2 · 3H2O
O Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
O KirschsteiniteCaFe2+SiO4
O CahniteCa2[B(OH)4](AsO4)
O AegirineNaFe3+Si2O6
O KalsiliteKAlSiO4
O Chabazite-SrSr2[Al2Si4O12]2 · 12H2O
O Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
O ZirconZr(SiO4)
O Cordierite(Mg,Fe)2Al3(AlSi5O18)
O QuartzSiO2
O Garnet GroupX3Z2(SiO4)3
O AluniteKAl3(SO4)2(OH)6
O KaoliniteAl2(Si2O5)(OH)4
O DickiteAl2(Si2O5)(OH)4
O Halloysite-7ÅAl2(Si2O5)(OH)4
O Halloysite-10ÅAl2Si2O5(OH)4 · 2H2O
O Pyrochlore Group (var: Uranpyrochlore (of Hogarth 1977))(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
O HedenbergiteCaFe2+Si2O6
O Hastingsite{Na}{Ca2}{Fe42+Fe3+}(Al2Si6O22)(OH)2
O NoseanNa8(Al6Si6O24)(SO4) · H2O
O Magnesio-hastingsite{Na}{Ca2}{Mg4Fe3+}(Al2Si6O22)(OH)2
O Britholite-(Ce)(Ce,Ca)5(SiO4)3OH
O LarniteCa2SiO4
O Vishnevite(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
O GeikieliteMgTiO3
O Allanite-(Ce){CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH)
O DanburiteCaB2Si2O8
O Stillwellite-(Ce)(Ce,La,Ca)BSiO5
O ThoriteTh(SiO4)
O Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
O ZirconoliteCaZrTi2O7
O AfwilliteCa3(HSiO4)2 · 2H2O
O CupriteCu2O
O GypsumCaSO4 · 2H2O
O ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
O Tobermorite[Ca4Si6O17 · 2H2O]·(Ca·3H2O)
O VertumniteCa4Al4Si4O6(OH)24 · 3H2O
O AtacamiteCu2(OH)3Cl
O Ashcroftine-(Y)K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
FFluorine
F FluoboriteMg3(BO3)(F,OH)3
F BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
F ApatiteCa5(PO4)3(Cl/F/OH)
F CuspidineCa4(Si2O7)(F,OH)2
F FluorapatiteCa5(PO4)3F
F FluorophlogopiteKMg3(AlSi3O10)(F,OH)2
F Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
F GötzeniteNaCa6Ti(Si2O7)2OF3
F Guarinite(Na, Ca, Zr, Si, F, O)
F FluoriteCaF2
F Pyrochlore Group (var: Uranpyrochlore (of Hogarth 1977))(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
F Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
NaSodium
Na Haüyne(Na,K)3(Ca,Na)(Al3Si3O12)(SO4,S,Cl)
Na Phillipsite-K(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
Na Aegirine (var: Fedorovite)NaFe3+Si2O6
Na Franzinite(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
Na Anorthite (var: Labradorite)(Ca,Na)[Al(Al,Si)Si2O8]
Na NephelineNa3K(Al4Si4O16)
Na Augite (var: Fassaite)(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Na SodaliteNa8(Al6Si6O24)Cl2
Na Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Na NatroliteNa2Al2Si3O10 · 2H2O
Na Thomsonite-CaNaCa2[Al5Si5O20] · 6H2O
Na AnalcimeNa(AlSi2O6) · H2O
Na MesoliteNa2Ca2Si9Al6O30 · 8H2O
Na LazuriteNa6Ca2(Al6Si6O24)(SO4,S,S2,S3,Cl,OH)2
Na GötzeniteNaCa6Ti(Si2O7)2OF3
Na Guarinite(Na, Ca, Zr, Si, F, O)
Na Richterite{Na}{NaCa}{Mg5}(Si8O22)(OH)2
Na Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
Na AegirineNaFe3+Si2O6
Na Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Na Hastingsite{Na}{Ca2}{Fe42+Fe3+}(Al2Si6O22)(OH)2
Na NoseanNa8(Al6Si6O24)(SO4) · H2O
Na Magnesio-hastingsite{Na}{Ca2}{Mg4Fe3+}(Al2Si6O22)(OH)2
Na Vishnevite(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
Na Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
Na Ashcroftine-(Y)K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
MgMagnesium
Mg SpadaiteMgSiO2(OH)2 · H2O (?)
Mg FluoboriteMg3(BO3)(F,OH)3
Mg Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Mg BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Mg ForsteriteMg2SiO4
Mg VesuvianiteCa19Fe3+Al4(Al6Mg2)(☐4)☐[Si2O7]4[(SiO4)10]O(OH)9
Mg HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
Mg PericlaseMgO
Mg PhlogopiteKMg3(AlSi3O10)(OH)2
Mg Augite (var: Fassaite)(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Mg SpinelMgAl2O4
Mg HarkeriteCa12Mg4Al(BO3)3(SiO4)4(CO3)5 · H2O
Mg Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Mg FluorophlogopiteKMg3(AlSi3O10)(F,OH)2
Mg LudwigiteMg2Fe3+(BO3)O2
Mg MagnesioferriteMgFe23+O4
Mg DiopsideCaMgSi2O6
Mg WiluiteCa19MgAl4(Al,Mg)8(B,☐)4☐[Si2O7]4[(SiO4)10]O(O,OH)9
Mg MonticelliteCaMgSiO4
Mg Richterite{Na}{NaCa}{Mg5}(Si8O22)(OH)2
Mg ArtiniteMg2(CO3)(OH)2 · 3H2O
Mg Cordierite(Mg,Fe)2Al3(AlSi5O18)
Mg Magnesio-hastingsite{Na}{Ca2}{Mg4Fe3+}(Al2Si6O22)(OH)2
Mg GeikieliteMgTiO3
AlAluminium
Al Latiumite(Ca,K)4(Si,Al)5O11(SO4,CO3)
Al Haüyne(Na,K)3(Ca,Na)(Al3Si3O12)(SO4,S,Cl)
Al Phillipsite-K(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
Al Franzinite(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
Al LeuciteK(AlSi2O6)
Al BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Al Anorthite (var: Labradorite)(Ca,Na)[Al(Al,Si)Si2O8]
Al NephelineNa3K(Al4Si4O16)
Al AnorthiteCa(Al2Si2O8)
Al VesuvianiteCa19Fe3+Al4(Al6Mg2)(☐4)☐[Si2O7]4[(SiO4)10]O(OH)9
Al PhlogopiteKMg3(AlSi3O10)(OH)2
Al Augite (var: Fassaite)(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Al SpinelMgAl2O4
Al SanidineK(AlSi3O8)
Al SodaliteNa8(Al6Si6O24)Cl2
Al GrossularCa3Al2(SiO4)3
Al HarkeriteCa12Mg4Al(BO3)3(SiO4)4(CO3)5 · H2O
Al Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Al NatroliteNa2Al2Si3O10 · 2H2O
Al Thomsonite-CaNaCa2[Al5Si5O20] · 6H2O
Al FluorophlogopiteKMg3(AlSi3O10)(F,OH)2
Al AnalcimeNa(AlSi2O6) · H2O
Al Gismondine-CaCaAl2Si2O8 · 4H2O
Al KaliophiliteKAlSiO4
Al HercyniteFe2+Al2O4
Al EttringiteCa6Al2(SO4)3(OH)12 · 26H2O
Al Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Al MesoliteNa2Ca2Si9Al6O30 · 8H2O
Al WiluiteCa19MgAl4(Al,Mg)8(B,☐)4☐[Si2O7]4[(SiO4)10]O(O,OH)9
Al LazuriteNa6Ca2(Al6Si6O24)(SO4,S,S2,S3,Cl,OH)2
Al Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
Al KalsiliteKAlSiO4
Al Chabazite-SrSr2[Al2Si4O12]2 · 12H2O
Al Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Al Cordierite(Mg,Fe)2Al3(AlSi5O18)
Al AluniteKAl3(SO4)2(OH)6
Al KaoliniteAl2(Si2O5)(OH)4
Al DickiteAl2(Si2O5)(OH)4
Al Halloysite-7ÅAl2(Si2O5)(OH)4
Al Halloysite-10ÅAl2Si2O5(OH)4 · 2H2O
Al Hastingsite{Na}{Ca2}{Fe42+Fe3+}(Al2Si6O22)(OH)2
Al NoseanNa8(Al6Si6O24)(SO4) · H2O
Al Magnesio-hastingsite{Na}{Ca2}{Mg4Fe3+}(Al2Si6O22)(OH)2
Al Vishnevite(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
Al Allanite-(Ce){CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH)
Al VertumniteCa4Al4Si4O6(OH)24 · 3H2O
SiSilicon
Si Latiumite(Ca,K)4(Si,Al)5O11(SO4,CO3)
Si Haüyne(Na,K)3(Ca,Na)(Al3Si3O12)(SO4,S,Cl)
Si Phillipsite-K(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
Si SpadaiteMgSiO2(OH)2 · H2O (?)
Si WollastoniteCaSiO3
Si Aegirine (var: Fedorovite)NaFe3+Si2O6
Si Franzinite(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
Si Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Si Andradite (var: Melanite)Ca3Fe23+(SiO4)3
Si LeuciteK(AlSi2O6)
Si AndraditeCa3Fe23+(SiO4)3
Si BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Si Anorthite (var: Labradorite)(Ca,Na)[Al(Al,Si)Si2O8]
Si ForsteriteMg2SiO4
Si NephelineNa3K(Al4Si4O16)
Si AnorthiteCa(Al2Si2O8)
Si VesuvianiteCa19Fe3+Al4(Al6Mg2)(☐4)☐[Si2O7]4[(SiO4)10]O(OH)9
Si PhlogopiteKMg3(AlSi3O10)(OH)2
Si Augite (var: Fassaite)(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Si SanidineK(AlSi3O8)
Si SodaliteNa8(Al6Si6O24)Cl2
Si GrossularCa3Al2(SiO4)3
Si CuspidineCa4(Si2O7)(F,OH)2
Si Melilite GroupCa2M(XSiO7)
Si OpalSiO2 · nH2O
Si TitaniteCaTi(SiO4)O
Si HarkeriteCa12Mg4Al(BO3)3(SiO4)4(CO3)5 · H2O
Si Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Si NatroliteNa2Al2Si3O10 · 2H2O
Si Thomsonite-CaNaCa2[Al5Si5O20] · 6H2O
Si FluorophlogopiteKMg3(AlSi3O10)(F,OH)2
Si AnalcimeNa(AlSi2O6) · H2O
Si Gismondine-CaCaAl2Si2O8 · 4H2O
Si KaliophiliteKAlSiO4
Si Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Si DiopsideCaMgSi2O6
Si MesoliteNa2Ca2Si9Al6O30 · 8H2O
Si WiluiteCa19MgAl4(Al,Mg)8(B,☐)4☐[Si2O7]4[(SiO4)10]O(O,OH)9
Si LazuriteNa6Ca2(Al6Si6O24)(SO4,S,S2,S3,Cl,OH)2
Si GötzeniteNaCa6Ti(Si2O7)2OF3
Si Guarinite(Na, Ca, Zr, Si, F, O)
Si MonticelliteCaMgSiO4
Si EkaniteCa2ThSi8O20
Si Richterite{Na}{NaCa}{Mg5}(Si8O22)(OH)2
Si Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
Si KirschsteiniteCaFe2+SiO4
Si AegirineNaFe3+Si2O6
Si KalsiliteKAlSiO4
Si Chabazite-SrSr2[Al2Si4O12]2 · 12H2O
Si Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Si ZirconZr(SiO4)
Si Cordierite(Mg,Fe)2Al3(AlSi5O18)
Si QuartzSiO2
Si Garnet GroupX3Z2(SiO4)3
Si KaoliniteAl2(Si2O5)(OH)4
Si DickiteAl2(Si2O5)(OH)4
Si Halloysite-7ÅAl2(Si2O5)(OH)4
Si Halloysite-10ÅAl2Si2O5(OH)4 · 2H2O
Si HedenbergiteCaFe2+Si2O6
Si Hastingsite{Na}{Ca2}{Fe42+Fe3+}(Al2Si6O22)(OH)2
Si NoseanNa8(Al6Si6O24)(SO4) · H2O
Si Magnesio-hastingsite{Na}{Ca2}{Mg4Fe3+}(Al2Si6O22)(OH)2
Si Britholite-(Ce)(Ce,Ca)5(SiO4)3OH
Si LarniteCa2SiO4
Si Vishnevite(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
Si Allanite-(Ce){CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH)
Si DanburiteCaB2Si2O8
Si Stillwellite-(Ce)(Ce,La,Ca)BSiO5
Si ThoriteTh(SiO4)
Si Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
Si AfwilliteCa3(HSiO4)2 · 2H2O
Si ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
Si Tobermorite[Ca4Si6O17 · 2H2O]·(Ca·3H2O)
Si VertumniteCa4Al4Si4O6(OH)24 · 3H2O
Si Ashcroftine-(Y)K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
PPhosphorus
P ApatiteCa5(PO4)3(Cl/F/OH)
P FluorapatiteCa5(PO4)3F
SSulfur
S Latiumite(Ca,K)4(Si,Al)5O11(SO4,CO3)
S Haüyne(Na,K)3(Ca,Na)(Al3Si3O12)(SO4,S,Cl)
S Franzinite(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
S PyriteFeS2
S BaryteBaSO4
S EttringiteCa6Al2(SO4)3(OH)12 · 26H2O
S LazuriteNa6Ca2(Al6Si6O24)(SO4,S,S2,S3,Cl,OH)2
S PyrrhotiteFe7S8
S SphaleriteZnS
S AluniteKAl3(SO4)2(OH)6
S GalenaPbS
S NoseanNa8(Al6Si6O24)(SO4) · H2O
S Vishnevite(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
S GypsumCaSO4 · 2H2O
S ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
ClChlorine
Cl Haüyne(Na,K)3(Ca,Na)(Al3Si3O12)(SO4,S,Cl)
Cl SodaliteNa8(Al6Si6O24)Cl2
Cl ApatiteCa5(PO4)3(Cl/F/OH)
Cl Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Cl LazuriteNa6Ca2(Al6Si6O24)(SO4,S,S2,S3,Cl,OH)2
Cl AtacamiteCu2(OH)3Cl
KPotassium
K Latiumite(Ca,K)4(Si,Al)5O11(SO4,CO3)
K Haüyne(Na,K)3(Ca,Na)(Al3Si3O12)(SO4,S,Cl)
K Phillipsite-K(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
K Franzinite(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
K LeuciteK(AlSi2O6)
K BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
K NephelineNa3K(Al4Si4O16)
K PhlogopiteKMg3(AlSi3O10)(OH)2
K SanidineK(AlSi3O8)
K Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
K FluorophlogopiteKMg3(AlSi3O10)(F,OH)2
K KaliophiliteKAlSiO4
K KalsiliteKAlSiO4
K Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
K AluniteKAl3(SO4)2(OH)6
K Vishnevite(Na,K)8(Al6Si6O24)(SO4,CO3) · 2H2O
K Ashcroftine-(Y)K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
CaCalcium
Ca Latiumite(Ca,K)4(Si,Al)5O11(SO4,CO3)
Ca Haüyne(Na,K)3(Ca,Na)(Al3Si3O12)(SO4,S,Cl)
Ca Phillipsite-K(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
Ca WollastoniteCaSiO3
Ca Franzinite(Na,K)6Ca2(Al6Si6O24)(SO4)2 · 0.5H2O
Ca Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Ca Andradite (var: Melanite)Ca3Fe23+(SiO4)3
Ca AndraditeCa3Fe23+(SiO4)3
Ca Anorthite (var: Labradorite)(Ca,Na)[Al(Al,Si)Si2O8]
Ca AnorthiteCa(Al2Si2O8)
Ca VesuvianiteCa19Fe3+Al4(Al6Mg2)(☐4)☐[Si2O7]4[(SiO4)10]O(OH)9
Ca CalciteCaCO3
Ca Augite (var: Fassaite)(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Ca ApatiteCa5(PO4)3(Cl/F/OH)
Ca GrossularCa3Al2(SiO4)3
Ca CuspidineCa4(Si2O7)(F,OH)2
Ca Melilite GroupCa2M(XSiO7)
Ca TitaniteCaTi(SiO4)O
Ca HarkeriteCa12Mg4Al(BO3)3(SiO4)4(CO3)5 · H2O
Ca FluorapatiteCa5(PO4)3F
Ca AragoniteCaCO3
Ca Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Ca Thomsonite-CaNaCa2[Al5Si5O20] · 6H2O
Ca Gismondine-CaCaAl2Si2O8 · 4H2O
Ca PerovskiteCaTiO3
Ca EttringiteCa6Al2(SO4)3(OH)12 · 26H2O
Ca DiopsideCaMgSi2O6
Ca MesoliteNa2Ca2Si9Al6O30 · 8H2O
Ca WiluiteCa19MgAl4(Al,Mg)8(B,☐)4☐[Si2O7]4[(SiO4)10]O(O,OH)9
Ca LazuriteNa6Ca2(Al6Si6O24)(SO4,S,S2,S3,Cl,OH)2
Ca GötzeniteNaCa6Ti(Si2O7)2OF3
Ca Guarinite(Na, Ca, Zr, Si, F, O)
Ca MonticelliteCaMgSiO4
Ca FluoriteCaF2
Ca EkaniteCa2ThSi8O20
Ca Richterite{Na}{NaCa}{Mg5}(Si8O22)(OH)2
Ca Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
Ca KirschsteiniteCaFe2+SiO4
Ca CahniteCa2[B(OH)4](AsO4)
Ca Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Ca Pyrochlore Group (var: Uranpyrochlore (of Hogarth 1977))(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Ca HedenbergiteCaFe2+Si2O6
Ca Hastingsite{Na}{Ca2}{Fe42+Fe3+}(Al2Si6O22)(OH)2
Ca Magnesio-hastingsite{Na}{Ca2}{Mg4Fe3+}(Al2Si6O22)(OH)2
Ca Britholite-(Ce)(Ce,Ca)5(SiO4)3OH
Ca LarniteCa2SiO4
Ca Allanite-(Ce){CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH)
Ca DanburiteCaB2Si2O8
Ca Stillwellite-(Ce)(Ce,La,Ca)BSiO5
Ca Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
Ca ZirconoliteCaZrTi2O7
Ca AfwilliteCa3(HSiO4)2 · 2H2O
Ca GypsumCaSO4 · 2H2O
Ca ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
Ca Tobermorite[Ca4Si6O17 · 2H2O]·(Ca·3H2O)
Ca VertumniteCa4Al4Si4O6(OH)24 · 3H2O
Ca Ashcroftine-(Y)K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
TiTitanium
Ti Augite (var: Fassaite)(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Ti TitaniteCaTi(SiO4)O
Ti PerovskiteCaTiO3
Ti Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Ti GötzeniteNaCa6Ti(Si2O7)2OF3
Ti Pyrochlore Group (var: Uranpyrochlore (of Hogarth 1977))(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Ti GeikieliteMgTiO3
Ti ZirconoliteCaZrTi2O7
CrChromium
Cr ChromiteFe2+Cr23+O4
FeIron
Fe Aegirine (var: Fedorovite)NaFe3+Si2O6
Fe Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Fe Andradite (var: Melanite)Ca3Fe23+(SiO4)3
Fe AndraditeCa3Fe23+(SiO4)3
Fe BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Fe MagnetiteFe2+Fe23+O4
Fe VesuvianiteCa19Fe3+Al4(Al6Mg2)(☐4)☐[Si2O7]4[(SiO4)10]O(OH)9
Fe Augite (var: Fassaite)(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Fe PyriteFeS2
Fe VonseniteFe22+Fe3+(BO3)O2
Fe ChromiteFe2+Cr23+O4
Fe LudwigiteMg2Fe3+(BO3)O2
Fe MagnesioferriteMgFe23+O4
Fe HercyniteFe2+Al2O4
Fe Maghemite(Fe3+0.670.33)Fe23+O4
Fe PyrrhotiteFe7S8
Fe KirschsteiniteCaFe2+SiO4
Fe AegirineNaFe3+Si2O6
Fe Cordierite(Mg,Fe)2Al3(AlSi5O18)
Fe HedenbergiteCaFe2+Si2O6
Fe Hastingsite{Na}{Ca2}{Fe42+Fe3+}(Al2Si6O22)(OH)2
Fe Magnesio-hastingsite{Na}{Ca2}{Mg4Fe3+}(Al2Si6O22)(OH)2
Fe Allanite-(Ce){CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH)
Fe Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
CuCopper
Cu CopperCu
Cu CupriteCu2O
Cu AtacamiteCu2(OH)3Cl
ZnZinc
Zn SphaleriteZnS
AsArsenic
As CahniteCa2[B(OH)4](AsO4)
As Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
SrStrontium
Sr Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Sr Chabazite-SrSr2[Al2Si4O12]2 · 12H2O
YYttrium
Y Ashcroftine-(Y)K5Na5(Y,Ca)12Si28O70(OH)2(CO3)8 · 8H2O
ZrZirconium
Zr BaddeleyiteZrO2
Zr Guarinite(Na, Ca, Zr, Si, F, O)
Zr ZirconZr(SiO4)
Zr ZirconoliteCaZrTi2O7
NbNiobium
Nb Pyrochlore GroupA2Nb2(O,OH)6Z
Nb Pyrochlore Group (var: Uranpyrochlore (of Hogarth 1977))(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
BaBarium
Ba Phillipsite-K(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
Ba BaryteBaSO4
LaLanthanum
La Stillwellite-(Ce)(Ce,La,Ca)BSiO5
La Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
CeCerium
Ce Pyrochlore Group (var: Uranpyrochlore (of Hogarth 1977))(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Ce Britholite-(Ce)(Ce,Ca)5(SiO4)3OH
Ce Allanite-(Ce){CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH)
Ce Stillwellite-(Ce)(Ce,La,Ca)BSiO5
Ce Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
TaTantalum
Ta Pyrochlore Group (var: Uranpyrochlore (of Hogarth 1977))(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
PbLead
Pb LeadPb
Pb GalenaPbS
ThThorium
Th EkaniteCa2ThSi8O20
Th ThoriteTh(SiO4)
Th Vicanite-(Ce)(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7
UUranium
U Pyrochlore Group (var: Uranpyrochlore (of Hogarth 1977))(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)

Fossils

There are 3 fossil localities from the PaleoBioDB database within this region.

BETA TEST - These data are provided on an experimental basis and are taken from external databases. Mindat.org has no control currently over the accuracy of these data.

Occurrences8
Youngest Fossil Listed0.01 Ma (Pleistocene)
Oldest Fossil Listed5.33 Ma (Miocene)
Stratigraphic Units
UnitNo. OccurrencesAge
Via Cortina d'Ampezzo22.588 - 0.0117 Ma (Pleistocene)
Fossils from RegionClick here to show the list.
Accepted NameHierarchy Age
Naticarius
genus
Animalia : Mollusca : Gastropoda : Littorinimorpha : Naticidae : Naticarius1.806 - 0.781 Ma
Pleistocene
Xenophora
genus
Animalia : Mollusca : Gastropoda : Xenophoridae : Xenophora1.806 - 0.781 Ma
Pleistocene
Steno
genus
Animalia : Chordata : Mammalia : Cetacea : Delphinidae : Steno5.333 - 2.588 Ma
Cenozoic
Sus
genus
Animalia : Chordata : Mammalia : Artiodactyla : Suidae : Sus2.588 - 0.0117 Ma
Pleistocene
Leptobos
genus
Animalia : Chordata : Mammalia : Artiodactyla : Bovidae : Leptobos2.588 - 0.0117 Ma
Pleistocene
Mesoplodon longirostris
species
Animalia : Chordata : Mammalia : Cetacea : Ziphiidae : Mesoplodon : Mesoplodon longirostris5.333 - 2.588 Ma
Cenozoic
Calyptraea chinensis
species
Animalia : Mollusca : Gastropoda : Calyptraeidae : Calyptraea : Calyptraea chinensis1.806 - 0.781 Ma
Pleistocene
Capulus hungaricus
species
Animalia : Mollusca : Gastropoda : Capulidae : Capulus : Capulus hungaricus1.806 - 0.781 Ma
Pleistocene
Fossil LocalitiesClick to show 3 fossil localities

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
• Klaproth, M.H. (1797): Untersuchung des Leucit, Beiträge zur chemischen Kenntniss der Mineralkörper, Zweiter Band, Rottmann Berlin, 39-59
Washington, H.S. (1908) The Roman comagmatic region. Carnegie Institution of Washington, Washington, D.C., publ. 57, 199 pp.
Fornaseri, M. (1951) Ricerche petrografiche sul vulcano Laziale. I proietti inclusi nei tufi. Parte I. Gli inclusi a struttura granulare. Periodico di Mineralogia, 20, 211-235.
Federico, M., and Fornaseri, M. (1952) Le miche dei proietti del vulcano Laziale. Periodico di Mineralogia, 21, 209-227.
Andreatta, C., Pirani, R., and Scherillo, A. (1954) Processi di "argillificazione" in lave, scorie, inclusi del Vulcano Laziale. Periodico di Mineralogia, 23, 1-25.
Cocco, G., Coradossi, N., Tonani, F., and Dragone, F. (1957) Ricerche mineralogiche sui prodotti vulcanici dell'Italia centrale; le sabbie di Albano e Nemi e i tufi peperini. Periodico di Mineralogia, 26, 387-421.
Burragato, F. (1963) Ritrovamento di Breislakite in bombe vulcaniche provenienti da una cava di pozzolana nera del Vulcano Laziale. Periodico di Mineralogia, 32, 625-632.
Fornaseri, M., Scherillo, A., and Ventriglia, U. (1963) La regione vulcanica dei Colli Albani - Vulcano Laziale. Consiglio Nazionale delle Ricerche, Aziende Tip. Eredi dott. Bardi, Roma, 561 pp.
Taddeucci A. (1964) Il boro ed il fluoro nelle regioni vulcaniche dei colli Albani, del Cimino e di Vico. Periodico di Mineralogia, 33, 73-148.
Bachechi, F., Federico, M., and Fornaseri, M. (1966) Prima segnalazione di ludwigite e di magnesioferrite nelle geodi delle "pozzolane nere" di Corcolle (regione vulcanica dei Colli Albani). Periodico di Mineralogia, 35, 717.
Bachechi, F., Federico, M., and Fornaseri, M. (1966) La ludwigite e i minerali che l'accompagnano nelle geodi delle "pozzolane nere" di Corcolle (Tivoli, Colli Albani). Periodico di Mineralogia, 35, 975-1022.
Barbieri, M., Fornaseri, M., and Penta, A. (1968) Rubidio e potassio nelle vulcaniti dei Colli Albani, di Vico e del Cimino. Periodico di Mineralogia, 37, 243-298.
Grubessi, O., and Lombardi, G. (1968) Su un proietto del vulcano Laziale e la zeolitizzazione del tufo peperino includente. Periodico di Mineralogia, 37, 1035-1052.
Barbieri, M., Mitsaki, V., and Penta, A. (1969) Una provincia geochimica ricca in stronzio: i Colli Albani; contenuto in stronzio e fenomeni di zeolitizzazione delle piroclastiti. Periodico di Mineralogia, 38, 117-153.
Barbieri, M., and Penta, A. (1969) Stronzio e rubidio nelle zeoliti dei Colli Albani. Periodico di Mineralogia, 38, 447-460.
Fornaseri, M., and Turi, B. (1969) Carbon and oxygen isotopic composition of carbonates in lavas and ejectites from the Alban Hills, Italy. Contributions to Mineralogy and Petrology, 23, 244-256.
Taddeucci, A. (1969) Uranio e torio nei minerali di alcune piroclastiti dei Colli Albani. Disequilibri isotopici e possibilita di datazioni. Periodico di Mineralogia, 38, 463-476.
• Barbieri, M., Cozzupoli, D., Federico, M., Fornaseri, M., & Tolomeo, L. (1973). Harkerite negli inclusi del peperino dei Colli Albani. Periodico di Mineralogia, 42, 687-688.
Del Caldo, A., Moro, C., Gramaccioli, C.M., Boscardin, M. (1973) Guida ai minerali. Fratelli Fabbri Editori, Milano, 208 pp.
De Michele, V. (1974) Guida mineralogica d'Italia. Istituto Geografico De Agostini, Novara, 2 vol., 408 pp.
• Barbieri, M., Cozzupoli, D., Federico, M., Fornaseri, M., Merlino, S., Orlandi, P., & Tolomeo, L. (1977). Harkerite from the Alban Hills, Italy. Lithos, 10, 133-141.
• Burragato, F., Mattias, P. & Parodi, G. (1978). Analisi all'infrarosso di alcune zeoliti dei Colli Albani (Lazio). Rendiconti della Società Italiana di Mineralogia e Petrologia, 34, 27-36.
Funiciello, R., and Parotto, M. (1978) Il substrato sedimentario nell’area dei Colli Albani: considerazioni geodinamiche e paleogeografiche sul margine tirrenico dell’Appennino Centrale. Geologica Romana, 17, 233-287.
• Federico, M. & Gianfagna, A. (1980): Al, Ca and Fe3+ bearing opal pseudomorph after melilite in ejecta and lavas of the Alban Hills, Italy. Periodico di Mineralogia, 49, 149-157
• FEDERICO M. and GIANFAGNA A. (1981) - Opale pseudomorfo su melilite da proietti e lave dei Colli Albani, Vulcano Laziale, Italia. Rend. S.I.M.P., 37 (I), 565
• FEDERICO M. and GIANFAGNA A. (1982-83) - The melilites of the ejecta and lavas from the Alban Hills (Rome, Italy). Rend. Soc. It. Mineral. Petrol., 38, 1387-1400
Peccerillo, A., Poli, G., and Tolomeo, L. (1984) Genesis, evolution and tectonic significance of K-rich volcanics from the Alban Hills (Roman comagmatic region) as inferred from trace element geochemistry. Contributions to Mineralogy and Petrology, 86, 3, 230-240.
• GIANFAGNA A. (1985) - Occurrence of baddeleyite - ZrO2 - in an ejected block from Colle Cimino, Marino (Alban Hills, Italy). Period. Mineral., 54 (2-3), 129-133
Amato, A., and Valensise, G. (1986) Il basamento sedimentario dell’area albana: risultati di uno studio degli “ejecta” dei crateri idromagmatici di Albano e Nemi. Memorie della Società Geologica Italiana, 35, 761-767.
• AURISICCHIO C., FEDERICO M. e GIANFAGNA A. (1986) - Chimismo dei clinopirosseni delle lave della Regione Vulcanica dei Colli Albani. Rend. S.I.M.P., 41 (1), 135-136
• AURISICCHIO C., FEDERICO M. and GIANFAGNA A. (1988) - The clinopyroxene chemistry in the H-K suite from the Alban Hills, Italy. Mineralogy and Petrology, 39, 1-19
De Rita, D., Funiciello, R., and Rosa, C. (1988) Caratteristiche deposizionali della II colata piroclastica del Tuscolano-Artemisio (complesso vulcanico dei Colli Albani, Roma). Bollettino del Gruppo Nazionale di Vulcanologia, 4, 278–297.
• GIANFAGNA A. and TUZI F. (1988) - Pyrrhotite-, diopside- and phlogopite-bearing "coronas" around olivine from the Alban Hills, Italy. N. Jb. Miner. Mh, 12, 529-538
Gianfagna, A., Merlino, S. and Perchiazzi, N. (1988) Guarinite, a new finding in the sanidinite ejecta of the IV Hydromagmatic Unit from Albano Lake crater, Latium, Italy. Periodico di Mineralogia, 57, 81-84.
• FEDERICO M., GIANFAGNA A. and ZANAZZI P.F. (1988) - Zirconium- bearing fassaite from the Alban Hills, Italy. N. Jb. Miner. Mh, 11, 495-502
• FREDA C., GAETA M., GIANFAGNA A., PALLADINO D. and TRIGILA R. (1990) - The Villa Senni Pyroclastic Formation (Alban Hills, Italy): magma behaviour and eruptive mechanism. PLINIUS (Suppl. EJM), 4, 64-65
De Rita, D., and Rosa, C. (1991) Definizione della stratigrafia e della geocronologia di alcune effusioni laviche nell’area dei Colli Albani (Lava dell’Acquacetosa e Lava di Vallerano, Roma). Rendiconti della Società Geologica Italiana, 13, 143-146.
Giordano, G., and Chiarabba, C. (1991) I depositi piroclastici della Media Valle dell'Aniene: correlazioni stratigrafiche con i prodotti del Vulcano Laziale. Studi Geologici Camerti, Special Volume (1991/2) "Studi preliminari all'acquisizione dati del profilo CROP 11 Civitavecchia-Vasto", 351–355.
De Rita, D., Funiciello, R., and Rosa, C., (1992) Volcanic activity anddrainage network evolution of the Colli Albani area (Rome, Italy). Acta Vulcanologica, 2, 185–198.
• GIANFAGNA A. (1993): Non-metamict Thorite and Ekanite in Alban Hills "sanidinites" (Latium, Italy). PLINIUS (suppl. EJM), 10, 165-166
Federico, M., Peccerillo, A., Barbieri, M., and Wu, T.W. (1994) Mineralogical and geochemical study of granular xenoliths from the Alban Hills volcano, Central Italy: bearing on evolutionary processes in potassic magma chambers. Contributions to Mineralogy and Petrology, 115, 4, 384-401.
• GIANFAGNA A. and MARCOTULLI A. (1995) - Hydrothermal evidences and magma evolution from the mineralogical assemblage in the "Sperone" formation of Montecompatri (Alban Hills, Latium, Italy). Period. Mineral. , 64, 189-190
• GIANFAGNA A, BURRAGATO F. and MARCOTULLI A. (1995) - K-feldspars as volcanic paleosoil indicators: first investigation in the Alban Hills volcanic area, Latium, Italy. N. Jb. Miner. Mh., 9, 408-420.
Trigila, R. , ed. (1995) The Volcano of the Alban Hills. Tipografia SGS, Roma, 283 pp.
Karner, D., Marra, F., and Renne, P. (2001) The history of the Monti Sabatini and Alban Hills volcanoes: Ground for assessing volcanic-tectonic hazards for Rome. Journal of Volcanology and Geothermal Research, 107, 1, 185-215.
Palladino, D.M., Gaeta, M., and Marra, F. (2001) A large K-foiditic hydromagmatic eruption from the early activity of the Alban Hills Volcanic District, Italy. Bulletin of Volcanology, 63, 5, 345-359.
De Rita, D., Giordano, G., Esposito, A., and Fabbri, M. (2002) Large volume phreatomagmatic ignimbrites from the Colli Albani volcano (Middle Pleistocene, Italy). Journal of Volcanology and Geothermal Research, 118, 1, 77-98.
Federico, M., and Peccerillo, A. (2002) Mineral chemistry and petrogenesis of granular ejecta from the Alban Hills volcano (Central Italy). Mineralogy and Petrology, 74(2), 223-252.
Funicello, R., Giordano, G., De Rita, D., Carapezza, M.L., and Barberi, F. (2002) L’attività recente del cratere del Lago Albano di Castelgandolfo. Rendiconti Lincei. Scienze Fisiche e Naturali, 13, 3, 113-143.
Giordano, G., De Rita, D., Cas, R.A.F., and Rodani, S. (2002) Valley pond and ignimbrite veneer deposits in the small-volume phreatomagmatic 'Peperino Albano' basic ignimbrite, Lago Albano maar, Colli Albani volcano, Italy: Influence of topography. Journal of Volcanology and Geothermal Research, 118, 1, 131-144.
Funiciello, R., Giordano, G., and De Rita, D. (2003) The Albano maar lake (Colli Albani Volcano, Italy): Recent volcanic activity and evidence of pre-Roman Age catastrophic lahar events. Journal of Volcanology and Geothermal Research, 123, 1, 43-61.
Giordano, G., Esposito, A., De Rita, D., Fabbri, M., Mazzini, I., Trigari, A., Rosa, C. and Funiciello, R. (2003) The sedimentation along the Roman coast between middle and upper Pleistocene: the interplay of eustatism, tectonics and volcanism - new data and review. Il Quaternario, 16(bis), 121-129.
Marra, F., Freda, C., Scarlato, P., Taddeucci, J., Karner, D.B., Renne, P.R., Gaeta, M., Palladino, D.M., Trigila, R., and Cavarretta, G. (2003) Post-caldera activity in the Alban Hills volcanic district (Italy): 40Ar/39Ar geochronology and insights into magma evolution. Bulletin of Volcanology, 65, 227–247.
Soligo, M., Tuccimei, P., Giordano, G., Funicello, R,. and De Rita, D. (2003) U-series dating of a carbonate level underlying the peperino Albano phreatomagmatic ignimbrite (Colli Albani, Italy). Quaternario, 16(bis), 115-120.
Watkins, S.D., Giordano, G., Cas, R.A.F., and De Rita, D. (2003) Internal facies changes in mafic pyroclastic density current deposits: a record of temporal changes in the eruption style of the Villa Senni Eruption Unit, Alban Hills Volcano, Rome, Italy. Journal of Volcanology and Geothermal Research, 118, 173-204.
• Caponera, I., Fiori, S., Pucci, R. (2003): Fluoborite, piombo nativo, richterite ed altri interessanti ritrovamenti nei Colli Albani. Il Cercapietre, 1-2
Brigatti, M.F., Caprilli, E., Funiciello, R., Giordano, G., Mottana, A. and Poppi, L. (2005) Crystalchemistry of ferroan phlogopites from the Albano maar lake (Colli Albani volcano, central Italy). European Journal of Mineralogy, 17, 611-622.
Funiciello, R., De Benedetti, A.A., Diano, G., Giordano, G., and Porreca, M. (2005) Le eruzioni esplosive più recenti del cratere di Albano. Convegno "Ecosistema Roma" 14-16 aprile 2004. Atti dei Convegni Lincei, Accademia Nazionale dei Lincei Ed., Roma, 227-228.
Giordano, G., Scenna, A., and Funiciello, R. (2005) Analisi vulcanologico-stratigrafica della Successione del Tavolato. Convegno "Ecosistema Roma" 14-16 aprile 2004. Atti dei Convegni Lincei, Accademia Nazionale dei Lincei Ed., Roma, 221-227.
Peccerillo, A. (2005) Plio-Quaternary volcanism in Italy. Petrology, Geochemistry, Geodynamics. Springer, Springer, Berlin - Heidelberg- New York, 365 pp.
Gaeta, M., Freda, C., Christensen, J.N., Dallai, L., Marra, F., Karner, D.B., and Scarlato, P. (2006) Time-dependent geochemistry of clinopyroxene from the Alban Hills (Central Italy): clues to the source and evolution of ultrapotassic magmas. Lithos, 86, 330-246.
Giordano, G., De Benedetti, A.A., Diana, A., Diano, G., Gaudioso, F., Marasco, F., Miceli, M., Mollo, S., Cas, R.A.F., and Funicello, R. (2006) The Colli Albani mafic caldera (Roma, Italy): Stratigraphy, structure and petrology. Journal of Volcanology and Geothermal Research, 155, 49–80.
• Caponera, I., Fiori, S., Pucci, R., & Signoretti, E. (2007). I minerali dei Colli Albani. Un aggiornamento sugli ultimi dieci anni di ricerche. Rivista Mineralogica Italiana, 31 (2), 74-91
Bianchi, I., Piana Agostinetti, N., De Gori, P., and Chiarabba, C. (2008) Deep structure of the Colli Albani volcanic district (central Italy) from receiver functions analysis. Journal of Geophysical Research, 113, B09313, 16 pp.
Boari, E., Avanzinelli, R., Melluso, L., Giordano, G., Mattei, M., De Benedetti, A.A., Morra, V., and Conticelli, S. (2009) Isotope geochemistry (Sr–Nd–Pb) and petrogenesis of leucite-bearing volcanic rocks from “Colli Albani” volcano, Roman Magmatic Province, Central Italy: inferences on volcano evolution and magma genesis. Bulletin of Volcanology, 71, 9, 977-1005.
De Benedetti, A. A., Funiciello, R., Giordano, G., Caprilli, E., Diano, G., and Paterne, M. (2008) Volcanology, history and myths of the Lake Albano maar (Colli Albani volcano, Italy). Journal of and Geothermal Research, Special issue “Volcanoes and Human History”, 176, 387-406.
Laurora, A., Malferrari, D., Brigatti, M.F., Mottana, A., Caprilli, E., Giordano, G., and Funiciello, R. (2009) Crystal chemistry of trioctahedral micas in the top sequences of the Colli Albani volcano, Roman Region, central Italy. Lithos, 113, 507-520.
De Benedetti, A.A., Caprilli, E., Rossetti, F., and Giordano, G. (2010) Metamorphic, metasomatic and intrusive xenoliths of the Colli Albani volcano and their significance for the reconstruction of the volcano plumbing system. In: Funiciello, R., and Giordano, G. (eds) The Colli Albani Volcano. Special Publication of IAVCEI, Volume 3. The Geological Society Publishing House, Bath, UK, pages 153-176.
Funicello, R., and Giordano, G., eds. (2010) The Colli Albani Volcano. Special Publications of IAVCEI, Volume 3. The Geological Society Publishing House, Bath, UK, 393 pp.
Giordano, G., Mattei, M., and Funiciello, R. (2010) Geological map of the Colli Albani volcano 1:50 000. In: Funiciello, R., and Giordano, G. (eds) The Colli Albani Volcano. Special Publication of IAVCEI, Volume 3. The Geological Society Publishing House, Bath, UK, Insert.
Della Ventura, G., Mottana, A., Caprilli, E., Bellatreccia, F., and De Benedetti, A. (2014) Asbestiform tremolite within the late pyroclastic deposits of the Alban Hills volcano (Latium, Italy): FTIR spectroscopy and crystal chemistry. Rendiconti Lincei. Scienze Fisiche e Naturali, 25, 229-236.

Other Databases

Wikipedia:https://en.wikipedia.org/wiki/Alban_Hills
Wikidata ID:Q1129380
GeoNames ID:3183359

Localities in this Region

Other Regions, Features and Areas that Intersect

Eurasian PlateTectonic Plate

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2020, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: February 22, 2020 20:19:16 Page generated: February 22, 2020 02:56:47
Go to top of page