Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Victoria, Australiai
Regional Level Types
VictoriaState
AustraliaCountry

This page kindly sponsored by Keith Compton
Key
Lock Map
View of the Victoria gold mining area, ca. 1910.

Victoria, Australia
View of the Victoria gold mining area, ca. 1910.

Victoria, Australia
View of the Victoria gold mining area, ca. 1910.

Victoria, Australia
View of the Victoria gold mining area, ca. 1910.

Victoria, Australia
View of the Victoria gold mining area, ca. 1910.

Victoria, Australia
View of the Victoria gold mining area, ca. 1910.

Victoria, Australia
Neighbouring regions:
Locality type:State
Largest Settlements:
PlacePopulation
Melbourne4,246,375 (2017)
Geelong226,034 (2013)
Bendigo100,617 (2013)
Ballarat97,937 (2014)
Reservoir47,637 (2015)
Berwick44,779 (2015)
Museums in region:


Victoria is incorporated into 79 municipalities for the purposes of local government, including 39 shires, 32 cities, seven rural cities and one borough.

Many of the co-ordinates for mine sites are from records of Earth Resources-GeoVic-Explore Victoria Online.

Co-ordinates are also provided via the Victorian State Government Register of Geographic Names.

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded from this region.


Mineral List

Mineral list contains entries from the region specified including sub-localities

403 valid minerals. 17 (TL) - type locality of valid minerals. 2 (FRL) - first recorded locality of unapproved mineral/variety/etc.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Rock list contains entries from the region specified including sub-localities

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Acanthite
Formula: Ag2S
Reference: Birch, W. D. (2017). Mineralogy of the Silver King deposit, Omeo, Victoria. Proceedings of the Royal Society of Victoria, 129(1), 41-52.
Actinolite
Formula: ☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Aegirine
Formula: NaFe3+Si2O6
Aegirine-augite
Formula: (NaaCabFe2+cMgd)(Fe3+eAlfFe2+gMgh)Si2O6
Aikinite
Formula: PbCuBiS3
Reference: Ciobanu, C. L., Birch, W. D., Cook, N. J., Pring, A., & Grundler, P. V. (2010). Petrogenetic significance of Au–Bi–Te–S associations: the example of Maldon, Central Victorian gold province, Australia. Lithos, 116(1), 1-17.
Albite
Formula: Na(AlSi3O8)
Localities: Reported from at least 32 localities in this region.
Albite var: Andesine
Formula: (Na,Ca)[Al(Si,Al)Si2O8]
Localities: Reported from at least 8 localities in this region.
Albite var: Oligoclase
Formula: (Na,Ca)[Al(Si,Al)Si2O8]
'Albite-Anorthite Series'
Localities: Reported from at least 6 localities in this region.
Allanite-(Ce)
Formula: {CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH)
'Allanite Group'
Formula: {A12+REE3+}{M3+2M32+}(Si2O7)(SiO4)O(OH)
Allophane
Formula: (Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Description: Reported as pale earthy stalactites up to 8 cm long
Reference: Phosphate Minerals of Victoria, The Mineralogical Society of Victoria, Special Publication No. 3 1993
Alluaudite
Formula: (Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Almandine
Formula: Fe2+3Al2(SiO4)3
Localities: Reported from at least 7 localities in this region.
'Almandine-Spessartine Series'
Alunite
Formula: KAl3(SO4)2(OH)6
Alunogen
Formula: Al2(SO4)3 · 17H2O
Reference: Segnit, E. R. "Tamarugite from Anglesea, Victoria, Australia." Mineral. Mag 40 (1976): 642-644.
'Amber'
Reference: Kirejtshuk, A. G., Merkl, O., & Kernegger, F. (2008). A new species of the genus Pentaphyllus Dejean, 1821 (Coleoptera: Tenebrionidae, Diaperinae) from the Baltic amber and checklist of the fossil Tenebrionidae. Zoosyst Ross, 17, 131-137.
Amblygonite
Formula: LiAl(PO4)F
Reference: Eagle, R. M., Birch, W. D., & McKnight, S. (2015). Phosphate minerals in granitic pegmatites from the Mount Wills District, north-eastern Victoria. Proceedings of the Royal Society of Victoria, 127(2), 55-68.
Analcime
Formula: Na(AlSi2O6) · H2O
Localities: Reported from at least 26 localities in this region.
Anatase
Formula: TiO2
Andalusite
Formula: Al2(SiO4)O
Localities: Reported from at least 6 localities in this region.
'Andorite'
Formula: AgPbSb3S6
Andradite
Formula: Ca3Fe3+2(SiO4)3
'Andradite-Grossular Series'
Reference: Aust.Jour. Earth Sci. 46:251 (1999)
Anglesite
Formula: PbSO4
Ankerite
Formula: Ca(Fe2+,Mg)(CO3)2
Localities: Reported from at least 13 localities in this region.
Annite
Formula: KFe2+3(AlSi3O10)(OH)2
Description: Found associated with columbite and autunite.
Reference: Ryan Eagle
Anorthite
Formula: Ca(Al2Si2O8)
'Anorthoclase'
Formula: (Na,K)AlSi3O8
Localities: Reported from at least 18 localities in this region.
Antigorite
Formula: Mg3(Si2O5)(OH)4
Reference: Peter R. Buseck & Xin Hua (1993). Matrices of carbonaceous chondrite meteorites. Annual Review of Earth & Planetary Sciences 21, 255-305.
Antimony
Formula: Sb
Localities: Reported from at least 6 localities in this region.
'Apatite'
Localities: Reported from at least 22 localities in this region.
Aragonite
Formula: CaCO3
Localities: Reported from at least 37 localities in this region.
Arrojadite-(KFe)
Formula: {KNa}{Fe2+◻}{Ca}{Na2◻}{Fe2+13}{Al}(PO4)11(HPO4)(OH)2
Arsenic
Formula: As
Reference: Willman, C.E., Bibby, L.M., Radojkovic, A.M., Maher, S., Haydon, S.J., Hollis, J.D ., Osborne, C.R. (2002): Castlemaine 1:100 000 Map Area Geological Report, Geological Survey of Victoria Report 121. [ISBN: 0 7306 9462 3]
Arsenopyrite
Formula: FeAsS
Localities: Reported from at least 46 localities in this region.
Atacamite
Formula: Cu2(OH)3Cl
Reference: Uwe Kolitsch (SXRD-analysis)
Augite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Localities: Reported from at least 19 localities in this region.
Augite var: Fassaite
Formula: (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Reference: Glenn J. MacPherson, Miryam Bar-Matthews, Tsuyoshi Tanaka, Edward Olsen & Lawrence Grossman (1983). Refractory inclusions in the Murchison meteorite. Geochimica et Cosmochimica Acta 47, #4, 823-839.
Augite var: Titanian Augite
Formula: (Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
Aurichalcite
Formula: (Zn,Cu)5(CO3)2(OH)6
Aurostibite
Formula: AuSb2
Autunite
Formula: Ca(UO2)2(PO4)2 · 11H2O
Axinite-(Fe)
Formula: Ca2Fe2+Al2BSi4O15OH
'Axinite Group'
Reference: Ryan Eagle field observation 2016
Axinite-(Mn)
Formula: Ca2Mn2+Al2BSi4O15(OH)
Description: "In 1993 a boulder was discovered by the road adjacent to the small excavations on the deposit. The surface of the boulder contained some free-standing, wedge shaped, lustrous dark brown crystals up to 5mm across, which had been exposed by etching of the enclosing rock. X-ray diffraction and microprobe analysis determined the dark brown crystals to be manganaxinite set within a fine-grained matrix composed largely of diopside and calcite."
Reference: Henry, D.A., Birch, W.D. & MacRae, C.M. (2005): Manganaxinite from Pyle's limestone near Benambra, and ferroaxinite from Corop, Victoria. Australian Journal of Mineralogy 11, 27-33.
Azurite
Formula: Cu3(CO3)2(OH)2
Localities: Reported from at least 8 localities in this region.
Babingtonite
Formula: Ca2(Fe,Mn)FeSi5O14(OH)
Description: "The babingtonite occurs as an elongated black crystalline aggregate, 2 cm by 3 mm in cross-section, enclosed partly by stilbite and partly by apophyllite. In addition, many small single crystals, up to 5 mm long, are enclosed in stilbite or apophyllite, or project into a small irregular cavity which has been etched from the apophyllite. The babingtonite crystals are glossy black, crushing to a dark greyish green. They tend to be slightly tabular and may show coffin-shaped longitudinal sections. Faces in the plane of flattening may be striated."
Reference: Birch, W.D. (1983) Babingtonite, fluorapophyllite and sphene from Harcourt, Victoria, Australia. Mineralogical Magazine, Sept. 1983, 47, 377-380.
Bariopharmacosiderite
Formula: Ba0.5Fe3+4(AsO4)3(OH)4 · 5H2O
'Bariopharmacosiderite-C'
Colour: Pale orange-brown
Reference: Hager, S.L., Leverett, P., Williams, P.A., Mills, S.J., Hibbs, D.E., Raudsepp, M., Kampf, A.R., Birch, W.D. (2010): The single-crystal X-ray structures of bariopharmacosiderite-C, bariopharmacosiderite-Q and natropharmacosiderite, Canadian Mineralogist, 48, 1477-1485.
Baryte
Formula: BaSO4
Localities: Reported from at least 19 localities in this region.
Beraunite
Formula: Fe2+Fe3+5(PO4)4(OH)5 · 6H2O
Berthierite
Formula: FeSb2S4
Bertossaite
Formula: (Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4
Beryl
Formula: Be3Al2(Si6O18)
Betpakdalite-FeFe (TL)
Formula: [Fe3+2 (H2O)15(OH)2Fe3+(H2O)6][Mo8As2Fe3+3 O37]
Type Locality:
Reference: Mills, S.J., Kampf, A.R., Sutton, P. and Birch, W.D. (2017) Betpakdalite-FeFe, IMA 2017-011. CNMNC Newsletter No. 37, June 2017, page 740; Mineralogical Magazine, 81, 737–742.
Beudantite
Formula: PbFe3(AsO4)(SO4)(OH)6
'Biotite'
Localities: Reported from at least 22 localities in this region.
'Biotite var: Titanian Biotite'
Birnessite
Formula: (Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Bismite
Formula: Bi2O3
Description: Poorly-crystalline bismite containing tellurium.
Bismoclite
Formula: BiOCl
Bismuth
Formula: Bi
Localities: Reported from at least 10 localities in this region.
Bismuthinite
Formula: Bi2S3
Bismutite
Formula: (BiO)2CO3
Bleasdaleite (TL)
Formula: (Ca,Fe3+)2Cu5(Bi,Cu)(PO4)4(H2O,OH,Cl)13
Type Locality:
Description: "In April 1995 a boulder was broken open of pegmatite in the quarry, exposing copper mineralisation consisting of massive supergene chalcocite partially altered to a suite of secondary copper and silver minerals, including one containing Ca,Cu,Bi,P and Cl. (Bleasdaleite). The chalcocite in the bleasdaleite-bearing boulder forms massive patches up to about 5 cm across, occupying space between large orthoclase crystals. The rock around these patches is stained green, possibly due to malachite. Thin sections show that much of the chalcocite has been corroded and altered to veinlets of covellite. Secondary minerals have precipitated on the corroded surface of the chalcocite-covelliet. Pseudomalachite and chalcosiderite/turquoise form globules and crusts, while rare ulrichit, libethenite, torbernite and iodargyrite are present as scattered crystals with dimensions less than 1 mm. Bleasdaleite itself occurs as thin, dark brown scaly crusts and hemispherical clusters up to about 0.1 mm across. Scanning electron microscopy reveals delicate tabular crystals forming open rosette-like clusters and linings. The crystals reach up to about 20 micron across but are less than 1 micron thick. The lustre on broken surfaces is resinous, streak pale brown. Thin sections show bleasdaleite crystals are transparent and also reveal a well developed (001) cleavage."
Reference: B. Birch, A. Pring and U. Kolitsch (1999): Bleasdaleite, (Ca,Fe3+)2Cu5(Bi,Cu)(PO4)4¬(H2O,OH,Cl)13, a new mineral from Lake Boga, Victoria, Australia. Australian Journal of Mineralogy 5, 69-75; [AmMin 85:1321];
Bornite
Formula: Cu5FeS4
Boulangerite
Formula: Pb5Sb4S11
Bournonite
Formula: PbCuSbS3
Localities: Reported from at least 7 localities in this region.
Brazilianite
Formula: NaAl3(PO4)2(OH)4
Brochantite
Formula: Cu4(SO4)(OH)6
Reference: crocoite.com
Brookite
Formula: TiO2
Description: "Brookite if found only in a quartz vug at the Little Comet mine. About 10 specimens have been recognized, most of them unfortunately being broken. They are associated with either quartz or albite. The colour may vary from sky blue to honey-yellow, sometimes with a slight reddish tinge. The crystals are striated. Brookite forms delicate, thin plates between 0.5 and 0.3 mm thick and up to 1 cm in length. The crystals show a consistent habit although a few are unusually thick. Some of the darker crystals are a mixture of brookite and rutile."
Reference: Bussat, F. (1980) Minerals from some mines in the Woods Point district, Victoria. The Australian Mineralogist No.31 July 1980, pp. 147-152.
Brushite
Formula: Ca(HPO4) · 2H2O
Bultfonteinite
Formula: Ca2(HSiO4)F · H2O
Reference: Aust.Jour. Earth Sci. 46:251 (1999)
Cacoxenite
Formula: Fe3+24AlO6(PO4)17(OH)12 · 75H2O
Calcite
Formula: CaCO3
Localities: Reported from at least 94 localities in this region.
Calcite var: Ferroan Calcite
Formula: (Ca,Fe)CO3
Localities: Reported from at least 10 localities in this region.
'Calcite Group'
Formula: AXO3
Reference: L. D. Leader; J. A. Robinson; C. J. L. Wilson (2010): Role of faults and folding in controlling gold mineralisation at Fosterville, Victoria. Australian Journal of Earth Sciences, 57, 259–277.
Cassiterite
Formula: SnO2
Localities: Reported from at least 20 localities in this region.
Celestine
Formula: SrSO4
Cerussite
Formula: PbCO3
Cervantite
Formula: Sb3+Sb5+O4
'Chabazite'
Localities: Reported from at least 33 localities in this region.
'Chabazite var: Phacolite'
Reference: Newbery, C. (1880) Some New Localities in Victoria. Transactions and Proceedings of the Royal Society of Victoria Art VI pp144-145
Chabazite-Ca
Formula: (Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
Localities: Reported from at least 13 localities in this region.
Chabazite-K
Formula: (K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Description: Chabazite occurs in a few cavities associated with siderite as drusy crusts and colourless interpenetrating twins up to 1 mm across usually in the clay-pyrite breccia. The chabazite from Narre Warren is unusually rich in magnesium.
Reference: Birch (1989) Zeolites of Victoria, p94.; W.D.Birch & A. and S. Johnson 1979. Zoned Siderite and zeolites from Narre Warren, Victoria. The Australian Mineralogist No.20 Feb/March 1979, pp 97-99
Chabazite-Na
Formula: (Na2,K2,Ca,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Localities: Reported from at least 16 localities in this region.
Chalcanthite
Formula: CuSO4 · 5H2O
Chalcocite
Formula: Cu2S
Localities: Reported from at least 6 localities in this region.
Chalcophanite
Formula: (Zn,Fe,Mn)Mn3O7 · 3H2O
Reference: MINERALOGICAL MAGAZINE, DECEMBER 1984, VOL. 48, PP. 556-8
Chalcopyrite
Formula: CuFeS2
Localities: Reported from at least 49 localities in this region.
Chalcosiderite
Formula: CuFe3+6(PO4)4(OH)8 · 4H2O
Description: "Pale blue, pale green or bluish green globular crusts and individual spheres or hemispheres of minerals in the composition series between turquoise and chalcosiderite are widespread in the Lake Boga granite quarry. They occur most often lining small miarolitic cavities but may also be found on joint planes and in cavities etched in fluorapatite. Individual globules may reach close to 1 mm across. Well formed crystals have not been observed. Massive partial replacements of orthoclase crystals by turquoise have been collected, but are very rare. As an early-formed secondary hydrothermal mineral, turquoise/chalcosiderite is found with most of the other secondary phosphates from Lake Boga. Microprobe analyses of the bluish green crusts show the compositions fall between ferrian turquoise and aluminan chalcosiderite."
Reference: [AmMin 85:1321]; Am Min 93:691-697; W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Cheralite
Formula: CaTh(PO4)2
Reference: Mills, S. J., Birch, W. D., Maas, R., Phillips, D. & Plimer, I. R. (2008) Lake Boga Granite, northwestern Victoria: mineralogy, geochemistry and geochronology, Australian Journal of Earth Sciences, 55(3), 281–299.; Mills, S. J. & Birch, W. D. (2010) Uranmineralien aus dem Lake-Boga-Granit, Victoria, Australien. Mineralien-Welt, 21(3), 62–67. (In German)
Chlorargyrite
Formula: AgCl
Chlorargyrite var: Bromian Chlorargyrite
Formula: Ag(Cl,Br)
'Chlorite Group'
Localities: Reported from at least 25 localities in this region.
Chromite
Formula: Fe2+Cr3+2O4
Chrysoberyl
Formula: BeAl2O4
Reference: No reference listed
Chrysocolla
Formula: Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Cinnabar
Formula: HgS
Description: "Well forrmed crystals of cinnabar are uncommon and rarely exceed 0.5mm. However, drusy patches and cavity linings of bright red, striated crystals occur on some ore specimens. Cinnabar more commonly occurs as bright to dull red scaly coatings on fractures within quartz veins."
Reference: W.D. Birch., The Jamieson mercury deposit, Victoria. -Australian Journal of Mineralogy Vol.9, No.1, June 2003; McQueen, K. (2011). Mercury mining: A quick history of quicksilver in Australia. Journal of Australasian Mining History, 9, 74.
Claudetite
Formula: As2O3
Reference: Museum Victoria Mineralogy Collection
'Clays'
Reference: Judy Rowe
Clinochlore
Formula: Mg5Al(AlSi3O10)(OH)8
'Clinochrysotile'
Clinoenstatite
Formula: MgSiO3
Reference: Louis H. Fuchs, Kenneth J. Jensen & Edward Olsen (1970). Mineralogy and Composition of the Murchison Meteorite. Meteoritics 5, #4, p. 198. (Dec 1970).
'Clinoptilolite'
'Clinopyroxene Subgroup'
Clinozoisite
Formula: {Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Cobaltite
Formula: CoAsS
Cohenite
Formula: Fe3C
Description: As crystal clusters closely associated with taenite (Buchwald, 1975)
Reference: Cohen, E. W. (1897): Meteoric iron from Beaconsfield, Australia. Sitz.-ber. Akad. Berlin, 1035-1050 (in German). ; Buchwald, V. F. (1975) Handbook of Iron Meteorites. University of California Press. 1418 pages.
Columbite-(Fe)
Formula: Fe2+Nb2O6
'Columbite-Tantalite'
Connellite
Formula: Cu19(SO4)(OH)32Cl4 · 3H2O
Cookeite
Formula: (Al2Li)Al2(AlSi3O10)(OH)8
Reference: Ryan Eagle, Kim Dowling, Stafford McKnight (2018) Lithium mineralogy and petrogenetic differentiation of granitic pegmatites of the Dorchap Dyke Swarm, NE Victoria, Australia. in abstracts of the 22nd IMA Meeting Melbourne p 496
Copper
Formula: Cu
Localities: Reported from at least 11 localities in this region.
Cordierite
Formula: (Mg,Fe)2Al3(AlSi5O18)
Localities: Reported from at least 7 localities in this region.
Corundum
Formula: Al2O3
Localities: Reported from at least 18 localities in this region.
Corundum var: Barklyite (FRL)
Formula: Al2O3
Type Locality:
Reference: Liversidge, A. (1896) On some New South Wales and other minerals. The Chemical News and Journal of Physical Science, Volume 74:113-114 Sept. 4.
Corundum var: Ruby
Formula: Al2O3
Corundum var: Sapphire
Formula: Al2O3
Localities: Reported from at least 10 localities in this region.
Covellite
Formula: CuS
Localities: Reported from at least 7 localities in this region.
Cowlesite
Formula: CaAl2Si3O10 · 6H2O
Crandallite
Formula: CaAl3(PO4)(PO3OH)(OH)6
Cristobalite
Formula: SiO2
Cronstedtite
Formula: Fe2+2Fe3+((Si,Fe3+)2O5)(OH)4
Reference: Michael Zolensky & James L. Gooding (1987). Mineralogical variations within the matrices of CM carbonaceous chondrites. Meteoritics 22, #4, 544-545. (Dec 1987). ; Palmer, E.E. & Lauretta, D.S. (Oct 2011) Aqueous alteration of kamacite in CM chondrites: Meteoritics & Planetary Science: 46 (10): 1587-1607 (Oct 2011)
Cubanite
Formula: CuFe2S3
Cuprite
Formula: Cu2O
Cuspidine
Formula: Ca4(Si2O7)(F,OH)2
Reference: Aust.Jour. Earth Sci. 46:251 (1999)
Cyrilovite
Formula: NaFe3+3(PO4)2(OH)4 · 2H2O
Danburite
Formula: CaB2Si2O8
Reference: Birch, W. D. (1996). Danburite‐bearing calc‐silicate rocks from the Ascot Hills, Dookie, Victoria. Australian Journal of Earth Sciences, 43(4), 387-393.
Datolite
Formula: CaB(SiO4)(OH)
Description: Datolite at Dookie is not common. It is usually found as white anhedral masses in narrow veins which are filled with calcite. These veins also usually contain andradite crystals.
Reference: G.L. Morvell (1976), Mineral Occurrences at Dookie, Victoria. Australian Mineralogist No.6 Oct/Nov 1976 pp. 21-23
Daubréelite
Formula: Fe2+Cr3+2S4
Reference: Buchwald, V. F. (1975) Handbook of Iron Meteorites. University of California Press. 1418 pages.
Descloizite
Formula: PbZn(VO4)(OH)
Reference: Birch, W. D. & Mills, S. J. (2007) Sulphide–carbonate reaction in recrystallised limestone at Lilydale, Victoria, Australia: a new occurrence of phosphohedyphane, Australian Journal of Mineralogy, 13(2), 73–82.
Diamond
Formula: C
Diaspore
Formula: AlO(OH)
Reference: McAndrew, J. & Marsden, M.A.H., 1968. A regional guide to Victorian geology. Geology Department, University of Melbourne.
Dickite
Formula: Al2(Si2O5)(OH)4
Digenite
Formula: Cu9S5
Diopside
Formula: CaMgSi2O6
Localities: Reported from at least 12 localities in this region.
Diopside var: Chromian Diopside
Formula: Ca(Mg,Cr)Si2O6
Localities: Reported from at least 7 localities in this region.
'Diopside-Hedenbergite Series'
Dittmarite (TL)
Formula: (NH4)Mg(PO4) · H2O
Type Locality:
Description: Occurs in bat guano. Was originally found "in the form of small rhombic transparent crystals". The original material is lost and no other specimens appear to have been collected.
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 699; Birch, W.D. & D.A. Henry, eds. (1993): Phosphate Minerals of Victoria. The Mineralogical Society of Victoria - Special publication No.3 (192p): 123-144.
Djurleite
Formula: Cu31S16
Dolomite
Formula: CaMg(CO3)2
Localities: Reported from at least 26 localities in this region.
Dolomite var: Ferroan Dolomite
Formula: Ca(Mg,Fe)(CO3)2
Reference: Museum Victoria Mineralogy Collection
Dravite
Formula: Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Dufrénite
Formula: Ca0.5Fe2+Fe3+5(PO4)4(OH)6 · 2H2O
Description: "The iron phosphate mineral originally reffered to as dufrenite by Howitt (1913) has been identified as rockbridgeite by X-ray diffractionand microprobe analysis. Seams of dufrenite occurring with turquoise were said by IMC (1967) to be widespread, however no evidence for this exists on Museum specimens."
Reference: W. D. Birch and D. A. Henry in Phosphate Minerals of Victoria, p.83-90.
Dumortierite
Formula: (Al,Fe3+)7(SiO4)3(BO3)O3
Reference: No reference listed
Elbaite
Formula: Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
'Elbaite-Schorl Series'
'Electrum'
Formula: (Au, Ag)
Enargite
Formula: Cu3AsS4
Reference: Econ Geol (1994) 89:566-583
Enstatite
Formula: MgSiO3
Eosphorite
Formula: Mn2+Al(PO4)(OH)2 · H2O
Description: "Attractive honey-brown to pinkish brown, tapering prismatic crystals of eosphorite occur in cavities in the Wycherproof pegmatite veins. Drusy crusts of eosphorite crystals up to 0.2mm have been found in a vertical seam in the adjacent granite. In the pegmatites, the larger crystals often form sheaf-like aggregates, with individual crystals up to 1cm long. The eosphorite crystals often appear dull due to a thin coating of cyrilovite."
Reference: W.D.Birch. Phosphate Minerals of Victoria. The Mineralogical Society of Victoria special publication No. 3 pp. 28-32
Epidote
Formula: {Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Localities: Reported from at least 11 localities in this region.
'Epidote Supergroup'
Formula: A2M3(Si2O7)(SiO4)O(OH)
Epsomite
Formula: MgSO4 · 7H2O
Erionite-Ca
Formula: (Ca,K2,Na2)2[Al4Si14O36] · 15H2O
Erionite-Na
Formula: (Na2,K2,Ca)2[Al4Si14O36] · 15H2O
Eskolaite
Formula: Cr2O3
Reference: Ma, C., Beckett, J.R., Rossman, G.R. (2010): Discovery of a new chromium sulfide mineral, Cr5S6, in Murchison. 73rd Annual Meteoritical Society Meeting, 2010
Eulytine
Formula: Bi4(SiO4)3
Reference: Mineralogical Record: 29: 164.
Faustite
Formula: (Zn,Cu)Al6(PO4)4(OH)8 · 4H2O
Description: "At Phosphate Hill faustite occurs as pale green crystal aggregates up to 0.2mm across, enclosed in wavellite forming thin seams in dark grey chert. Microprobe analysis shows the faustite to contain significant copper."
Reference: W.D.Birch & D.A.Henry 1993. Phosphate Minerals of Victoria. The Mineralogical Society of Victoria special publication No. 3 pp 67-77
Fayalite
Formula: Fe2+2SiO4
'Fayalite-Forsterite Series'
Localities: Reported from at least 15 localities in this region.
'Feldspar Group'
Localities: Reported from at least 10 localities in this region.
'Feldspar Group var: Perthite'
Felsőbányaite
Formula: Al4(SO4)(OH)10 · 4H2O
Ferberite
Formula: FeWO4
'Ferrierite'
Ferrierite-Mg
Formula: (Mg,Na2,K2,Ca)3-5Mg[Al5-7Si27.5-31O72] · 18H2O
Reference: Birch, W.D. (1989) Zeolites of Victoria. Mineralogical Society of Victoria - Special Publication No.2 (110 pages).
Ferrimolybdite
Formula: Fe2(MoO4)3 · nH2O
'Ferrocalcite'
Reference: Newbery, C. (1880) Some New Localities in Victoria. Transactions and Proceedings of the Royal Society of Victoria Art VI pp144-145
'Ferro-kaersutite'
Formula: {Na}{Ca2}{Fe2+3AlTi}(Al2Si6O22)O2
Ferrosilite
Formula: FeSiO3
Reference: Sutton & Mills (2012)
Ferro-tschermakite
Formula: ☐{Ca2}{Fe2+3Al2}(Al2Si6O22)(OH)2
Description: Ferro-tschermakite is common at Dookie where it occurs as felt-like masses of fibrous brown to black needles with axinite-(Fe), andradite, actinolite and occasionally prehnite.
Reference: G L Morvell (1976). Mineral Occurrences at Dookie, Victoria. Australian Mineralogist No.6 Oct/Nov 1976, pp. 21-23; G.L. Morvell (1976), Mineral Occurrences at Dookie, Victoria. Australian Mineralogist No.6 Oct/Nov 1976 pp. 21-23
Fibroferrite
Formula: Fe3+(SO4)(OH) · 5H2O
Fluellite
Formula: Al2(PO4)F2(OH) · 7H2O
Fluorapatite
Formula: Ca5(PO4)3F
Localities: Reported from at least 23 localities in this region.
Fluorapatite var: Carbonate-rich Fluorapatite
Formula: Ca5(PO4,CO3)3(F,O)
Fluorapatite var: Mn-bearing Fluorapatite
Formula: (Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Reference: Ryan Eagle collection
Fluorapophyllite-(K)
Formula: KCa4(Si8O20)(F,OH) · 8H2O
Fluorite
Formula: CaF2
Localities: Reported from at least 12 localities in this region.
Fluor-schorl
Formula: Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3F
Description: Fluor-schorl is the dominant tourmaline at Lake Boga occurring as black interlocking crystals masses up to 15 cm across in the granite, also as single black crystals up to 5 cm long in miarolitic cavities (pers. com. S.Mills)
Reference: Ertl, A., Kolitsch, U., Dyar, M.D., Meyer, H.-P., Rossman, G.R., Henry, D.J., Prem, M., Ludwig, T., Nasdala, L., Lengauer, C.L., Tillmanns, E. and Niedermayr, G. (2016): Fluor-schorl, a new member of the tourmaline supergroup, and new data on schorl from the cotype localities. Eur. J. Mineral. 28, 163-177.
Forsterite
Formula: Mg2SiO4
Foshagite
Formula: Ca4(Si3O9)(OH)2
Reference: Aust.Jour. Earth Sci. 46:251 (1999)
Freibergite
Formula: Ag6[Cu4Fe2]Sb4S13-x
Galena
Formula: PbS
Localities: Reported from at least 40 localities in this region.
'Garnet Group'
Formula: X3Z2(SiO4)3
Localities: Reported from at least 15 localities in this region.
Geerite
Formula: Cu8S5
Gersdorffite
Formula: NiAsS
'Glass'
Reference: Birch, W. D., Wood, A., White, A. J. R., Mills, S. J. and Freeman, R. (2008): Aegirine-augite crystals in scoria from Mt Shadwell and Mt Anakie, Victoria, Australia. Australian Journal of Mineralogy 14, 37-42.
Glauberite
Formula: Na2Ca(SO4)2
Glauconite
Formula: (K,Na)(Mg,Fe2+,Fe3+)(Fe3+,Al)(Si,Al)4O10(OH)2
Reference: VicMine ID: 373261.
Glaucophane
Formula: ◻[Na2][Mg3Al2]Si8O22(OH)2
'Gmelinite'
'Gmelinite var: Ledererite'
Gmelinite-Na
Formula: Na4(Si8Al4O24] · 11H2O
Gobbinsite
Formula: Na5(Si11Al5)O32 · 11H2O
Habit: Radiating crystal group
Colour: White
Description: "The gobbinsite crystals form aggregates up to 4 mm across. They are water clear, with a wedge-like habit and lustrous faces that show evidence for lamellar twinning. Crystals are complexly interpenetrating and in some clusters show an apparent epitaxial relationship with a phillipsite crystal or with platy twinned aggregates of thomsonite."
Reference: G.D.Gatta, W.D.Birch & N.Rotirot. Reinvestigation of the crystal structure of the zeolite Gobbinsite. American Mineralogist 2010 vol. 95 pp.481-486
Goethite
Formula: α-Fe3+O(OH)
Localities: Reported from at least 16 localities in this region.
Gold
Formula: Au
Localities: Reported from at least 435 localities in this region.
Gonnardite
Formula: (Na,Ca)2(Si,Al)5O10 · 3H2O
Localities: Reported from at least 7 localities in this region.
Gorceixite
Formula: BaAl3(PO4)(PO3OH)(OH)6
Gordonite
Formula: MgAl2(PO4)2(OH)2 · 8H2O
Colour: colourless
Description: Gordonite forms crusts and aggregates of colorless platy crystals up to 0.3 mm across, often on soft pale brown clay fragments. Parwan is the first record of this mineral forming in a cave environment.
Reference: Birch, W.D. & Henry, D.J., 1993, Phosphate Minerals of Victoria, The Mineralogical Society of Victoria, Special Publication No. 3
Goyazite
Formula: SrAl3(PO4)(PO3OH)(OH)6
Goyazite var: Barian Goyazite
Formula: (Sr,Ba)Al3(PO4)2(OH)5 · H2O
Description: Encrusts zircon in montebrasite.
Reference: Personally collected by Ryan Eagle in 2009
Graphite
Formula: C
Graphite var: Cliftonite
Formula: C
Reference: Buchwald, V. F. (1975) Handbook of Iron Meteorites. University of California Press. 1418 pages.
Greenalite
Formula: (Fe2+,Fe3+)2-3Si2O5(OH)4
Reference: Michael Zolensky & James L. Gooding (1987). Mineralogical variations within the matrices of CM carbonaceous chondrites. Meteoritics 22, #4, 544-545. (Dec 1987).
Grossite
Formula: CaAl4O7
Reference: Dietmar Weber & Adolf Bischoff (1994). The occurrence of grossite (CaAl4O7) in chondrites. Geochimica et Cosmochimica Acta 58, #18, 3855–3877. (September 1994).
Grossular
Formula: Ca3Al2(SiO4)3
Gypsum
Formula: CaSO4 · 2H2O
Localities: Reported from at least 31 localities in this region.
Gypsum var: Selenite
Formula: CaSO4 · 2H2O
Halite
Formula: NaCl
Localities: Reported from at least 6 localities in this region.
'Halloysite'
Formula: Al2(Si2O5)(OH)4
Reference: G.H.F.Ulrich 1870. Contributions to the Mineralogy of Victoria 1870, pg 20.
Halotrichite
Formula: FeAl2(SO4)4 · 22H2O
Reference: Natural History Museum Vienna collection
Hannayite (TL)
Formula: (NH4)2Mg3H4(PO4)4 · 8H2O
Type Locality:
Description: Occurs in bat guano. Hannayite occurs as slender, translucent, near-colourless to pale yellow prisms reaching a maximum size of 12mm long, 2mm wide and approximately 1mm thick.
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 699, 700, 710.
Hechtsbergite
Formula: Bi2(VO4)O(OH)
Reference: Museum Victoria Collection
Hedenbergite ?
Formula: CaFe2+Si2O6
Description: SEM indicates that green "aegirine" has much more Ca than Na so if it is a pyroxene it is probably hedenbergite (Peter Elliot pers comm).
Reference: Steve Sorrell Collection
Hedleyite
Formula: Bi7Te3
Hematite
Formula: Fe2O3
Localities: Reported from at least 15 localities in this region.
Hemimorphite
Formula: Zn4Si2O7(OH)2 · H2O
Heterosite
Formula: (Fe3+,Mn3+)PO4
Heulandite-Ca
Formula: (Ca,Na)5(Si27Al9)O72 · 26H2O
Reference: Birch, W.D. (1989) Zeolites of Victoria. Mineralogical Society of Victoria - Special Publication No.2 (110 pages).
'Heulandite subgroup'
Localities: Reported from at least 10 localities in this region.
Hexahydrite
Formula: MgSO4 · 6H2O
Reference: Mark Raven , Rob Fitzpatrick , Paul Shand and Stuart McClure, 2010, Minerals diagnostic of acid sulfate soils. Extended Abstracts – 21st Australian Clay Minerals Conference – Brisbane, August 2010 Rob Fitzpatrick, Paul Shand, Mark Raven and Stuart McClure, 2010, Occurrence and environmental significance of sideronatrite and other mineral precipitates in Acid Sulfate Soils. 19th World Congress of Soil Science, Soil Solutions for a Changing World
Hexamolybdenum
Formula: (Mo,Ru,Fe,Ir,Os)
Reference: Ma, C., Beckett, J. R., & Rossman, G. R. (2014). Allendeite (Sc4Zr3O12) and hexamolybdenum (Mo, Ru, Fe), two new minerals from an ultrarefractory inclusion from the Allende meteorite. American Mineralogist, 99(4), 654-666.
Hibonite
Formula: (Ca,Ce)(Al,Ti,Mg)12O19
Reference: Louis H. Fuchs, Kenneth J. Jensen & Edward Olsen (1970). Mineralogy and Composition of the Murchison Meteorite. Meteoritics 5, #4, p. 198. (Dec 1970).
Hidalgoite
Formula: PbAl3(AsO4)(SO4)(OH)6
Hisingerite
Formula: Fe3+2(Si2O5)(OH)4 · 2H2O
'Hornblende'
Hübnerite
Formula: MnWO4
Huntite
Formula: CaMg3(CO3)4
Huttonite
Formula: ThSiO4
Habit: Anhedral. Included by minute galena grains. Has rimmed diagenetic pyrite.
Description: Found in metapelite, directly adjacent to an aplite-pegmatite dyke in drill core close to the United Brothers workings. Identified by electron microprobe, identity confirmed by Stuart Mills.
Reference: Eagle, R. (2009) . Petrology, petrogenesis and mineralisation of the Silurian pegmatites of the Mount Wills district, northeastern Victoria. B.Sc (Hons) thesis, University of Ballarat (unpubl.)
Hydrokenoelsmoreite
Formula: 2W2O6(H2O)
Hydrokenoelsmoreite var: Ferritungstite
Reference: Ryan Eagle field observation
Hydroxycalcioroméite
Formula: (Ca,Sb3+)2(Sb5+,Ti)2O6(OH)
Reference: Birch, W. D. (2015) Native antimony from Inglewood, Victoria. Australian Journal of Mineralogy Vol. 17 #2, 88-90.
Hydroxylapatite
Formula: Ca5(PO4)3(OH)
Ilesite
Formula: (Mn,Zn,Fe)SO4 · 4H2O
Description: "This mineral is very similar to szmikite in appearance and habit, although it tends to be finer-grained and more glistening on broken surfaces of the crusts. It is also slightly harder and more compact. It can also form more open intergrowths of roughly spherical aggregates which appear to have partly dissolved. SEM examination of samples identified as ilesite by XRD does not show any consistent textural features, suggesting it has replaced another sulphate."
Reference: W.D.Birch (2013), A suite of hydrated manganese sulfates from the Womobi mine, northern Victoria, Australia. Australian Journal of Mineralogy, 17/1.; A suite of hydrated manganese sulfates from the Womobi mine, northern Victoria, Australia. W.D.Birch, 2013, Australian Journal of Mineralogy, 17/1.
Ilmenite
Formula: Fe2+TiO3
Localities: Reported from at least 30 localities in this region.
Iodargyrite
Formula: AgI
Description: "A pegmatite boulder containing patches of massive chalcocite up to 4 cm across was found in April 1995. The chalcocite occupies cavities between large orthoclase crystals. Alteration of the chalcocite has produced a suite of secondary copper phosphate minerals in small cavities. In some cavities are colourless, waxy, platy to tabular crystals, up to about 1.0 mm across, which have been identified as a polymorph of silver iodide, probably iodargyrite."
Reference: [AmMin 85:1321]; W.D.Birch 1996. Portlandite and other recent mineral discoveries in the granites at Lake Boga, and Wycheproof and Pyramid Hill, Victoria. Australian Journal of Mineralogy Vol.2 No.2 Dec. 1996, pp. 47-50
Iron
Formula: Fe
Iron var: Kamacite
Formula: (Fe,Ni)
Iron var: Martensite
Formula: Fe
'Jahnsite Group'
Formula: XM1M22M32(H2O)8(OH)2(PO4)4
Jamesonite
Formula: Pb4FeSb6S14
Jarosite
Formula: KFe3+ 3(SO4)2(OH)6
Localities: Reported from at least 6 localities in this region.
Jôkokuite
Formula: MnSO4 · 5H2O
Description: "Jokokuite tends to be the more transparent and vitreous of the three manganese sulfates, and is more irregular in form and slightly harder. It occurs either as interlocking open crusts, or as isolated shapeless grains enclosed in ilesite. The colour ranges from cream to very pale blue, the latter colour being caused by traces of copper. It is likely that bladed crystals showing varying degrees of dissolution are jokokuite, although some may have been pseudomorphed by szmikite or ilesite."
Reference: W.D.Birch (2013), A suite of hydrated manganese sulfates from the Womobi mine, northern Victoria, Australia. Australian Journal of Mineralogy, 17/1.; A suite of hydrated manganese sulfates from the Womobi mine, northern Victoria, Australia. W.D.Birch, 2013, Australian Journal of Mineralogy, 17/1.
Jonassonite
Formula: AuBi5S4
Reference: Cristiana Ciobanu & Bill Birch 2008, Gold-Bismuth-Tellurium Mineralisation at Maldon, Victoria, Australia: A Classic Locality Revisited, Sixth Iinternational Conference, Mineralogy and Museums; Ciobanu, C. L., Birch, W. D., Cook, N. J., Pring, A., & Grundler, P. V. (2010). Petrogenetic significance of Au–Bi–Te–S associations: the example of Maldon, Central Victorian gold province, Australia. Lithos, 116(1), 1-17.
Joséite-A
Formula: Bi4TeS2
Reference: Cristiana Ciobanu & Bill Birch 2008, Gold-Bismuth-Tellurium Mineralisation at Maldon, Victoria, Australia: A Classic Locality Revisited, Sixth Iinternational Conference, Mineralogy and Museums; Ciobanu, C. L., Birch, W. D., Cook, N. J., Pring, A., & Grundler, P. V. (2010). Petrogenetic significance of Au–Bi–Te–S associations: the example of Maldon, Central Victorian gold province, Australia. Lithos, 116(1), 1-17.
Joséite-B
Formula: Bi4Te2S
Reference: Cristiana Ciobanu & Bill Birch 2008, Gold-Bismuth-Tellurium Mineralisation at Maldon, Victoria, Australia: A Classic Locality Revisited, Sixth Iinternational Conference, Mineralogy and Museums; Ciobanu, C. L., Birch, W. D., Cook, N. J., Pring, A., & Grundler, P. V. (2010). Petrogenetic significance of Au–Bi–Te–S associations: the example of Maldon, Central Victorian gold province, Australia. Lithos, 116(1), 1-17.
Kaersutite
Formula: {Na}{Ca2}{Mg3AlTi}(Al2Si6O22)O2
Kaolinite
Formula: Al2(Si2O5)(OH)4
Localities: Reported from at least 10 localities in this region.
Keckite
Formula: CaMn2+(Fe3+Mn2+)Fe3+2(PO4)4(OH)3 · 7H2O
Reference: Dr. Bill Birch - Museum Victoria
Kermesite
Formula: Sb2S2O
'K Feldspar'
Kidwellite
Formula: NaFe3+9+x(PO4)6(OH)11 · 3H2O, x = 0.33
Koechlinite
Formula: Bi2MoO6
Kosnarite
Formula: KZr2(PO4)3
Description: "Rhombohedral, vitreous, grey blue crystals up to 0.5mm acros occurring with eosphorite and cyrilovite in a 1cm wide miarolic cavity have been identified as kosnarite."
Reference: Birch,W.D.;et al., "Wycheproofite; a new hydrated sodium aluminium zirconium phosphate from Wycheproof, Victoria, Australia, and a new occurrence of kosnarite" ,Mineralogical Magazine. 58, 635-639(1994); R&M. 71:160-161 (1996); W.D.Birch. Phosphate Minerals of Victoria. The Mineralogical Society of Victoria special publication No. 3 pp. 28-32
Kryzhanovskite
Formula: (Fe3+,Mn2+)3(PO4)2(OH,H2O)3
Reference: Eagle, R. M., Birch, W. D., & McKnight, S. (2015). Phosphate minerals in granitic pegmatites from the Mount Wills District, north-eastern Victoria. Proceedings of the Royal Society of Victoria, 127(2), 55-68.
Kunatite (TL)
Formula: CuFe3+2(PO4)2(OH)2 · 4H2O
Type Locality:
Description: "Kunatite was first found about 1990, and occurs on only 7 or 8 small pieces of granite matrix, which may have been the contents of a single miarolitic cavity. kunatite from Lake Boga occurs as acicular to lath-like microcrystals that are rapidially intergrown to form compactto slightly open spheres, hemispheres and flattened sprays up to about 0.25mm across. Individual fibrous crystals are up to 30 micron long and 5 micron thick. The only supergene mineral associated with kunatite is chalcosiderite/turquoise. Thin blades of manganoan ferberite occur on several of the specimens, but this is regarded as an accidental association. The matrix minerals are smoky quartz, white albite, cream orthoclase and muscovite."
Reference: S.J.Mills, U.Kolitsch, W.D.Birch J.Sejkora. Australian J. Mineralogy 14, 3-12(2008)
'Labradorite'
Formula: (Ca,Na)[Al(Al,Si)Si2O8]
Reference: Shayan, Ahmad (1984) Hisingerite material from a basalt quarry near Geelong, Victoria, Australia. Clays and Clay Minerals, Vol 32, No.4, pp 272-278.
Lacroixite
Formula: NaAl(PO4)F
Description: Good XRD pattern fit of montebrasite material as "natromontebrasite", now known to be a mixture of montebrasite and lacroixite.
Reference: Eagle, R., Petrology, petrogenesis and mineralisation of granitic pegmatites of the Mount Wills district, northeastern Victoria
Lakebogaite (TL)
Formula: CaNaFe3+2H(UO2)2(PO4)4(OH)2 · 8H2O
Type Locality:
Description: "Lakebogaite occurs as bright lemon-yellow transparent prismatic crystals up to 0.4 mm across. The crystals have a vitreous luster and a pale yellow streak. It is associated with meurigite-Na, torbernite and saleeite on a matrix of microcline, albite, smoky quarz, and muscovite."
Reference: IMA website; Am Min 93:691-697; Mills, S. J. & Birch, W. D. (2010) Uranmineralien aus dem Lake-Boga-Granit, Victoria, Australien. Mineralien-Welt, 21(3), 62–67. (In German)
Laumontite
Formula: CaAl2Si4O12 · 4H2O
Localities: Reported from at least 9 localities in this region.
Lavendulan
Formula: NaCaCu5(AsO4)4Cl · 5H2O
Reference: No reference listed
Lazulite
Formula: MgAl2(PO4)2(OH)2
Lechatelierite ?
Formula: SiO2
Reference: Judy Rowe collection
Lepidocrocite
Formula: γ-Fe3+O(OH)
Reference: Judy Rowe Collection
'Lepidolite'
Leucite
Formula: K(AlSi2O6)
Leucophosphite
Formula: KFe3+2(PO4)2(OH) · 2H2O
Leucoxene
'Lévyne'
Localities: Reported from at least 10 localities in this region.
Lévyne-Ca
Formula: (Ca,Na2,K2)[Al2Si4O12] · 6H2O
Lévyne-Na
Formula: (Na2,Ca,K2)[Al2Si4O12] · 6H2O
Reference: Birch, W. D. (1989): Zeolites of Victoria, p. 98
Libethenite
Formula: Cu2(PO4)(OH)
Description: "Crusts and hemispherical tufts and sprays of transparent dark green to olive green libethenite crystals occur in miarolitic cavities in the Lake Boga granite. Crystals are prismatic and up to 2.5 mm long, ranging from finely fibrous needles to more stubby individuals which are well-terminated. Small cavities may be completely lined with inwardly pointing libethenite crystals. The minerals most frequently associated with libethenite are turquoise/chalcosiderite, ulrichite, pseudomalachite and sampleite."
Reference: [AmMin 85:1321]; Am Min 93:691-697; W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Lime
Formula: CaO
'Limonite'
Formula: (Fe,O,OH,H2O)
Localities: Reported from at least 15 localities in this region.
Lithiophorite
Formula: (Al,Li)MnO2(OH)2
Lizardite
Formula: Mg3(Si2O5)(OH)4
Reference: A. R. Seymon, 2006, Nickel Propectivity in Victoria, Geological Survey of Victoria Technical Record 2006/3
Löllingite
Formula: FeAs2
Reference: No reference listed
Luinaite-(OH)
Formula: Na(Fe2+)3Al6(Si6O18)(BO3)3(OH)3(OH)
Reference: IMA approvals - Sept. 2009
Machiite (TL)
Formula: Al2Ti3O9
Type Locality:
Reference: Knot, A.N. (2016): Machiite, IMA 2016-067. CNMNC Newsletter No. 34, December 2016, page 1317; Mineralogical Magazine: 80: 1315–1321
Maghemite
Formula: Fe3+2O3
Magnesite
Formula: MgCO3
Localities: Reported from at least 11 localities in this region.
Magnetite
Formula: Fe2+Fe3+2O4
Localities: Reported from at least 19 localities in this region.
Magnetite var: Aluminous Magnetite
Formula: Fe2+Fe3+2O4
Magnetite var: Titaniferous Magnetite
Formula: Fe2+(Fe3+,Ti)2O4
Malachite
Formula: Cu2(CO3)(OH)2
Localities: Reported from at least 14 localities in this region.
Maldonite (TL)
Formula: Au2Bi
Reference: Palache, C., H. Berman, and C. Frondel (1944) Dana’s system of mineralogy, (7th edition), v. I, 95–96.; Ciobanu, C. L., Birch, W. D., Cook, N. J., Pring, A., & Grundler, P. V. (2010). Petrogenetic significance of Au–Bi–Te–S associations: the example of Maldon, Central Victorian gold province, Australia. Lithos, 116(1), 1-17.
'Manganese Oxides'
'Manganese Oxides var: Manganese Dendrites'
Manganoblödite
Formula: Na2Mn(SO4)2·4H2O
Description: "Manganoblodite from the Womobi mine occurs as blocky pale-pink crystals up to 60 micron on edge and have been found on a specimen of szmikite that has replaced jokokuite."
Reference: W.D.Birch (2013), A suite of hydrated manganese sulfates from the Womobi mine, northern Victoria, Australia. Australian Journal of Mineralogy, 17/1.; A suite of hydrated manganese sulfates from the Womobi mine, northern Victoria, Australia. W.D.Birch, 2013, Australian Journal of Mineralogy, 17/1.
Marcasite
Formula: FeS2
Melanterite
Formula: Fe2+(H2O)6SO4 · H2O
Reference: WILKINSON, H.E., 1971. Antimony mining at Ringwood. In J. Fraser (ed.). Mining and Geological Journal 7(1). Department of Mines, Victoria, pp. 2-10.
'Melilite Group'
Formula: Ca2M(XSiO7)
Reference: Matzel, J. E. P.; Simon, J. I.; Hutcheon, I. D.; Jacobsen, B.; Simon, S. B.; Grossman, L. (2013). Oxygen Isotope Measurements of a Rare Murchison Type A CAI and its Rim. 44th Lunar and Planetary Science Conference, held March 18-22, 2013 in The Woodlands, Texas. LPI Contribution No. 1719, p.2632.
Mercury
Formula: Hg
Description: "Ore samples shows that mercury almost always occurs associated with the quart-dolomite veins and patches. Within the veins these are small cavities, from a few millimetres up to about 15mm across, that commonly contain globules of mercury. Those globules less than about 0.5mm across are generally spherical but larger globules up to 3mm across, are irregular. One cavity contained a continuous film up to 10mm across. As well, mercury may infill gaps between quartz crystals. Tiny spherical globules may also be found scattered across the surface of fractures along very thin quartz veinlets."
Reference: W.D. Birch., The Jamieson mercury deposit, Victoria. -Australian Journal of Mineralogy Vol.9, No.1, June 2003; McQueen, K. (2011). Mercury mining: A quick history of quicksilver in Australia. Journal of Australasian Mining History, 9, 74.
Merenskyite
Formula: (Pd,Pt)(Te,Bi)2
Reference: G.W.Cochrane 1982. Copper,Lead, Zinc and Barium deposits of Victoria, Geological Survey of Victoria, Bulletin No. 61, pp. 110-118
Merrillite
Formula: Ca9NaMg(PO4)7
Reference: Inoue, M. Itoh, S.,Yurimoto, H., Kimura, M. & Nakamura, N. (2012) A granular-olivine Clast with fractionated REE from the Murchison CM Chondrite: Evidence for alteration/metamorphism and melting on the CM parent asteroid. 75th Annual Meeting of the Meteoritical Society. pdf#5099.
Mesolite
Formula: Na2Ca2Si9Al6O30 · 8H2O
Localities: Reported from at least 9 localities in this region.
Meta-autunite
Formula: Ca(UO2)2(PO4)2 · 6-8H2O
Metacinnabar
Formula: HgS
Description: "Dark grey varieties of cinnabar have been recorded and it is possible that these incorporate very thin alteration films of metacinnabar that may be very difficult to detect optically or by X-ray defraction."
Reference: W.D. Birch., The Jamieson mercury deposit, Victoria. -Australian Journal of Mineralogy Vol.9, No.1, June 2003
Metanatroautunite
Formula: Na(UO2)(PO4)(H2O)3
Habit: As clusters to 4 mm.
Colour: lemon yellow
Description: "The metanatroautunite forms crystals and clusters up to 4 mm across on limonite-coated joint planes and in miarolitic cavities. Crystals may appear to be aggregates of intergrown plates with slightly rounded edges. In some crystals with more blocky habits, these plates may be separated. The upper surface of these crystals tend to be slightly concave and crinkled partly due to dehydration. Rare intergrowths with saleeite or torbernite occur. Metanatroautunite is initially difficult to distinguish from saleeite at Lake Boga. However, metanatroautunite tends to be translucent with a pearly or slightly greasy lustre, and be bright lemon yellow. This colour may be slightly more intense on the edge than on the upper face. Saleeite at Lake Boga is generally transparent and more golden yellow."
Reference: S.J. Mills (2004)- Metanatroautunite ('sodium autunite') from the Lake Boga Granite, Victoria - Austalian Journal of Mineralogy, Vol. 10, n°1; Mills, S. J. & Birch, W. D. (2010) Uranmineralien aus dem Lake-Boga-Granit, Victoria, Australien. Mineralien-Welt, 21(3), 62–67. (In German)
Metatorbernite
Formula: Cu(UO2)2(PO4)2 · 8H2O
Meurigite-K
Formula: KFe3+8(PO4)6(OH)7 · 6.5H2O
Description: Originally thought to be a mineral resembling potassian kidwellite (Birch 1994) has now been confirmed as meurigite-K. "At Wycheproof, meurigite occurs as yellow spheres and hemispheres up to about 0.2 mm across, with a silky white to cream fibrous internal structure. It is accompanied by rockbridgeite, cyrilovite and leucophosphite in small etch cavities in the granite pegmatite veins."
Reference: Mineralogical Magazine, 60, 787-793 W.D.Birch 1996. Portlandite and other recent mineral discoveries in the granites at Lake Boga, Wycheproof and Pyramid Hill, Victoria. Australian Journal of Mineralogy Vol.2, No.2, Dec. 1996
Meurigite-Na
Formula: NaFe3+8(PO4)6(OH)7 · 6.5H2O
Miargyrite
Formula: AgSbS2
'Mica Group'
Microcline
Formula: K(AlSi3O8)
'Microlite Group'
Formula: A2-mTa2X6-wZ-n
Reference: Personally collected by Ryan Eagle in 2009; Eagle, R. (2009) . Petrology, petrogenesis and mineralisation of the Silurian pegmatites of the Mount Wills district, northeastern Victoria. B.Sc (Hons) thesis, University of Ballarat (unpubl.); Eagle, R. M., Birch, W. D., & McKnight, S. (2015). Phosphate minerals in granitic pegmatites from the Mount Wills District, north-eastern Victoria. Proceedings of the Royal Society of Victoria, 127(2), 55-68.
'Microlite Group var: Uranmicrolite (of Hogarth 1977)'
Reference: Personally collected by Ryan Eagle in 2009; Eagle, R. M., Birch, W. D., & McKnight, S. (2015). Phosphate minerals in granitic pegmatites from the Mount Wills District, north-eastern Victoria. Proceedings of the Royal Society of Victoria, 127(2), 55-68.
Millerite
Formula: NiS
Mimetite
Formula: Pb5(AsO4)3Cl
Minnesotaite
Formula: Fe2+3Si4O10(OH)2
Reference: http://www.earth2006.org.au/papers/extendedpdf/Wilson.pdf#search=%22Magdala%20gold%20deposit%22
Molybdenite
Formula: MoS2
Localities: Reported from at least 9 localities in this region.
Molybdite
Formula: MoO3
Reference: Liddy, J.C. (1972) Exploration License No. 227 Mount Moliagul, Vict. : Summary report on exploration carried out to date on the license area. Department of Energy and Minerals, Victoria, Expired Mineral Exploration Reports File
'Monazite'
Localities: Reported from at least 16 localities in this region.
Monazite-(Ce)
Formula: Ce(PO4)
Localities: Reported from at least 8 localities in this region.
'Monazite Group'
Formula: MTO4, where M = REE, Th, Ca, Bi; T = P, As
Reference: Eagle, R. (2009) . Petrology, petrogenesis and mineralisation of the Silurian pegmatites of the Mount Wills district, northeastern Victoria. B.Sc (Hons) thesis, University of Ballarat (unpubl.)
Montebrasite
Formula: LiAl(PO4)(OH)
Montgomeryite
Formula: Ca4MgAl4(PO4)6(OH)4 · 12H2O
Colour: off-white
Description: In the Parwan Cave montgomeryite occurs in the clay-Taranakite matrix as off-white, straw-like crusts, with a pearly lustre up to 3 mm thick. Montgomeryite also forms spongy aggregates of elongated, platy, cream colored crystals up to 0.5 mm long, and loose clusters of white to cream spheres, between 0.1 and 0.3 mm across, consisting of platy crystals. Another variety of montgomeryite occurs as thin, light-yellow crusts, composed of slightly botryoidal rosettes of tiny plates.
Reference: Birch, W.D. & Henry, D.J., 1993, Phosphate Minerals of Victoria, The Mineralogical Society of Victoria, Special Publication No. 3
Montmorillonite
Formula: (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Localities: Reported from at least 8 localities in this region.
Mrázekite
Formula: Bi2Cu3(PO4)2O2(OH)2 · H2O
Reference: Mineralogical Record: 29: 164.
Murchisite (TL)
Formula: Cr5S6
Type Locality:
Reference: Ma, C., Beckett, J.R. & Rossman, G.R. (2011): Murchisite, Cr5S6, a new mineral from the Murchison meteorite. American Mineralogist, 96, 1905-1908.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Localities: Reported from at least 47 localities in this region.
Muscovite var: Fuchsite
Formula: K(Al,Cr)3Si3O10(OH)2
Reference: McAndrew, J. & Marsden, M.A.H., 1968. A regional guide to Victorian geology. Geology Department, University of Melbourne.
Muscovite var: Illite
Formula: K0.65Al2.0[Al0.65Si3.35O10](OH)2
Reference: Noble, R.P.P. (2012) Transported cover in northwestern Victoria, Australia – an impediment to geochemical exploration for gold, Journal of Geochemical Exploration, Vol 112, January 2012, pp139-151.
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Localities: Reported from at least 17 localities in this region.
Namibite
Formula: Cu(BiO)2(VO4)(OH)
Habit: isolated hemispheres and coatings of very thin tabular xls
Colour: pistachio-green to black
Reference: Dunning, G.E. & Cooper, J.F. (1998): Namibite. A summary of World Occurrences. Mineralogical Record 29, 163-166; Frost, R. L., Henry, D. A., Weier, M. L., & Martens, W. (2006). Raman spectroscopy of three polymorphs of BiVO4: clinobisvanite, dreyerite and pucherite, with comparisons to (VO4) 3‐bearing minerals: namibite, pottsite and schumacherite. Journal of Raman Spectroscopy, 37(7), 722-732.
Natrodufrénite
Formula: NaFe2+Fe3+5(PO4)4(OH)6 · 2H2O
Natrojarosite
Formula: NaFe3(SO4)2(OH)6
Natrolite
Formula: Na2Al2Si3O10 · 2H2O
Localities: Reported from at least 23 localities in this region.
Natrolite var: Mooraboolite
Formula: Na2Al2Si3O10 · 2H2O
Description: Note: the reference by Spencer refers to another reference: "G. B. Pritchard, Victorian Naturalist, 1901, vol. xviii, p. 63. A zeolite occurring as white, radial aggregates in the decomposed basalt of the Moorabool valley, Victoria".
Reference: Spencer (1903): Mineral. Mag. 13, 373
Natropharmacosiderite
Formula: (Na,K)Fe3+4(AsO4)3(OH)4 · 6-7H2O
Reference: No reference listed
Nepheline
Formula: Na3K(Al4Si4O16)
Localities: Reported from at least 7 localities in this region.
Newberyite (TL)
Formula: Mg(HPO4) · 3H2O
Description: Newberyite crystals from Skipton Caves show 3 different habits 1- the crystals are tabular, translucent to opaque and grey-brown, with faces of the dominant form being uneven and dull. Complex twinning on these faces produces irregular rosettes of intergrown plates or roughly spheroidal shape which may reach 5 cm across. 2- these crystals are glassy, internally fractured, have lustrous faces and range from pale yellow to a dirty brown colour. Inclusions of guano particles are common. These crystals are usually 0.1-10 mm. 3- less common habit shows features with characteristics of the tabular form and equant habits. These form "skeleton" crystals, in reference to the set of partly separated plates developed parallel to the brachy-pinacoids.
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 699, 710.; Webb, J. A., Joyce, E. B., & Stevens, N. C. (1982). Lava caves of Australia. In Proceedings of the Third International Symposium on Vulcanospeleology. International Speleological Foundation, Seattle. p74-85.
Nierite
Formula: Si3N4
Reference: Stroud, R. M., Nittler, L. R. & Alexander, C. M. O'd. (2006) Supernova Nierite (α-Si3N4) from Murchison (pdf.#5360): Meteoritics & Planetary Science 41 (8, Supplement): page A168. (Aug 2006)
Nontronite
Formula: Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Offretite
Formula: KCaMg(Si13Al5)O36 · 15H2O
Localities: Reported from at least 8 localities in this region.
Omphacite
Formula: (NaaCabFe2+cMgd)(AleFe3+fFe2+gMgh)Si2O6
Opal
Formula: SiO2 · nH2O
Localities: Reported from at least 30 localities in this region.
Opal var: Opal-AN
Formula: SiO2 · nH2O
Localities: Reported from at least 22 localities in this region.
Orthoclase
Formula: K(AlSi3O8)
Localities: Reported from at least 13 localities in this region.
'Orthopyroxene Subgroup'
Reference: Louis H. Fuchs, Kenneth J. Jensen & Edward Olsen (1970). Mineralogy and Composition of the Murchison Meteorite. Meteoritics 5, #4, p. 198. (Dec 1970).
Owyheeite
Formula: Ag3+xPb10-2xSb11+xS28, -0.13 < x > +0.20
Reference: W. D. Birch (1981) Silver Sulphosalts from the Meerschaum Mine, Mt. Wills, Victoria, Australia. Mineralogical Magazine 44:73-78.
Palygorskite
Formula: (Mg,Al)5(Si,Al)8O20(OH)2 · 8H2O
Paratacamite
Formula: Cu3(Cu,Zn)(OH)6Cl2
Pargasite
Formula: {Na}{Ca2}{Mg4Al}(Al2Si6O22)(OH)2
Reference: Museum Victoria Mineralogy Collection
Parwanite (TL)
Formula: (Na,K)(Mg,Ca)4Al8(PO4)8(CO3)(OH)7 · 30H2O
Type Locality:
Habit: Globular grains.
Colour: White
Description: Parwanite occurs as clusters up to 0.2 mm across of pseudo hexagonal platy crystals lining fissures and cavities in the clay/taranakite matrix. It has also crystalized on the brown clay fragments enclosed in the matrix. The crystals are white to cream and have a pearly lustre.
Reference: Birch, W.D. & Henry, D.J., 1993, Phosphate Minerals of Victoria, The Mineralogical Society of Victoria, Special Publication No. 3 Willian D. Birch, Stuart J. Mills, Karolina Schwendtner, Allan Pring, John A. Webb, Ralph Segnit and John A. Watts (2007): "Parwanite: a new hydrated Na-Mg-Al-phosphate from a lava cave at Parwan, Victoria, Australia". Australian Journal of Mineralogy, 13, 23-30.
Pentlandite
Formula: (FexNiy)Σ9S8
Perovskite
Formula: CaTiO3
'Petrified Wood'
Pharmacosiderite
Formula: KFe3+4(AsO4)3(OH)4 · 6-7H2O
Philipsbornite
Formula: PbAl3(AsO4)(AsO3OH)(OH)6
Reference: Museum Victoria collections
'Phillipsite'
Localities: Reported from at least 27 localities in this region.
Phillipsite-Ca
Formula: (Ca0.5,K,Na,Ba0.5)4-7[Al4-7Si12-9O32 . 12H2O
Phillipsite-K
Formula: (K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
Description: "At Trentham Falls quarry some attractive phillipsites have been collected. They often occur on a brown clay and are associated with chabazite and small spheres of siderite. The crystals up to 5mm show twinning and they are quite transparent with very few fractures."
Reference: W.D.Birch 1989. Zeolites of Victoria, The Mineralogical Association Of Victoria No. 2 pp. 75-84,100; J.D.Hollis. 1979. Some little known zeolite localities in central Victoria. The Australian Mineralogist No.21 April 1979, pp. 101-102
Phillipsite-Na
Formula: (Na,K,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] · 12H2O
Localities: Reported from at least 6 localities in this region.
Phlogopite
Formula: KMg3(AlSi3O10)(OH)2
Localities: Reported from at least 7 localities in this region.
Phosphoferrite
Formula: (Fe2+,Mn2+)3(PO4)2 · 3H2O
Phosphohedyphane
Formula: Ca2Pb3(PO4)3Cl
Reference: Birch, W. D. & Mills, S. J. (2007) Sulphide–carbonate reaction in recrystallised limestone at Lilydale, Victoria, Australia: a new occurrence of phosphohedyphane, Australian Journal of Mineralogy, 13(2), 73–82.
Phosphosiderite
Formula: FePO4 · 2H2O
Phosphuranylite
Formula: (H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
Pickeringite
Formula: MgAl2(SO4)4 · 22H2O
Pittongite (TL)
Formula: Na0.22(W,Fe3+)(O,OH)3 · 0.44H2O
Type Locality:
Description: "Pittongite occurs as glistening, creamy yellow encrustations of very thin(0.3-0.5 micron) platy crystals on etched blades of ferberite up to 4 cm long, enclosed in massive white reef quartz. It has formed by alteration of ferberite in a supergene environment in the presence of oxidizing, acidic solutions containing Na."
Reference: Birch, W.D., Grey, I.E., Mills, S.J., Bougerol, C., Pring, A., Ansermet, S. (2007): Pittongite, a new secondary tungstate from Pittong, Victoria, Australia. Canadian Mineralogist, 45, 857-864.
Planerite
Formula: Al6(PO4)2(HPO4)2(OH)8 · 4 H2O
'Plessite'
Reference: Buchwald, V. F. (1975) Handbook of Iron Meteorites. University of California Press. 1418 pages.
Plumbogummite
Formula: PbAl3(PO4)(PO3OH)(OH)6
Polydymite
Formula: Ni2+Ni3+2S4
Reference: A. R. Seymon, 2006, Nickel Propectivity in Victoria, Geological Survey of Victoria Technical Record 2006/3
Polylithionite
Formula: KLi2Al(Si4O10)(F,OH)2
Reference: Eagle, R. (2009) . Petrology, petrogenesis and mineralisation of the Silurian pegmatites of the Mount Wills district, northeastern Victoria. B.Sc (Hons) thesis, University of Ballarat (unpubl.)
Portlandite
Formula: Ca(OH)2
Description: Specimen was not in situ. Confirmation needed. See discussion in http://www.mindat.org/mesg-7-55384.html "A pale grey chert like mass, measuring about 45 x 30 x 25 cm was found in August 1995. The specimen had apparently been dislodged from where it had been enclosed in granite in the northeast corner of the quarr, about 6 metres from the top of the eastern wall. Thin quartz/calcite veinlets cut the portlandite."
Reference: Bill Birch (1996) Australian Journal of Mineralogy, 2, #2, 47-50.; W.D.Birch 1996. Portlandite and other recent mineral discoveries in the granites at Lake Boga, and Wycheproof and Pyramid Hill, Victoria. Australian Journal of Mineralogy Vol.2 No.2 Dec. 1996, pp. 47-50
Powellite
Formula: Ca(MoO4)
Prehnite
Formula: Ca2Al2Si3O10(OH)2
Proustite
Formula: Ag3AsS3
Reference: A. R. Seymon, 2006, Nickel Propectivity in Victoria, Geological Survey of Victoria Technical Record 2006/3
Pseudobrookite
Formula: Fe2TiO5
Pseudomalachite
Formula: Cu5(PO4)2(OH)4
Description: "Pseudomalachite occurs as irregular globular aggregates and, more rarely, rough crystals up to a few mm across, in cavities in the Lake Boga granite. It is pearly to vitreous, and transparent to translucent dark blueish green. It is often associated libethenite and ulrichite. The mineral also occurs as massive cavity fillings and scaly coatings on joint planes, where it its often seen with sampleiite, and may also occur very rarely as layers between cleavage flakes of muscovite."
Reference: [AmMin 85:1321]; Am Min 93:691-697; W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Pseudorutile
Formula: Fe2Ti3O9
Pseudorutile var: Hydroxylian Pseudorutile
Formula: FeTi6O13 · 4H2O ?
Reference: Museum Victoria Mineralogy Collection
'Psilomelane'
Reference: GeoVic online geospatial database, Victorian Department of Primary Industries Earth Resources Division
Pucherite
Formula: Bi(VO4)
Reference: Mineralogical Record: 29: 164.
'Pumpellyite'
Purpurite
Formula: (Mn3+,Fe3+)PO4
Reference: Eagle, R. M., Birch, W. D., & McKnight, S. (2015). Phosphate minerals in granitic pegmatites from the Mount Wills District, north-eastern Victoria. Proceedings of the Royal Society of Victoria, 127(2), 55-68.
Pyrargyrite
Formula: Ag3SbS3
Pyrite
Formula: FeS2
Localities: Reported from at least 123 localities in this region.
Pyrolusite
Formula: Mn4+O2
Reference: Museum Victoria Collection M 37653
Pyromorphite
Formula: Pb5(PO4)3Cl
Localities: Reported from at least 7 localities in this region.
Pyrope
Formula: Mg3Al2(SiO4)3
Reference: Museum Victoria Mineralogy Collection
Pyrrhotite
Formula: Fe7S8
Localities: Reported from at least 14 localities in this region.
Quartz
Formula: SiO2
Localities: Reported from at least 301 localities in this region.
Quartz var: Agate
Localities: Reported from at least 9 localities in this region.
Quartz var: Amethyst
Formula: SiO2
Localities: Reported from at least 8 localities in this region.
Quartz var: Carnelian
Reference: Birch, W. D. and Henry, D. A. (1997): Gem Minerals of Victoria
Quartz var: Chalcedony
Formula: SiO2
Localities: Reported from at least 11 localities in this region.
Quartz var: Citrine
Formula: SiO2
Quartz var: Darlingite (FRL)
Formula: SiO2
Type Locality:
Reference: Trans. R. Soc. Victoria, 1866, VII, 80; Proc. R. Soc. Victoria, 1897, N.S. IX, 86
Quartz var: Enhydro Agate
Formula: SiO2
Quartz var: Eye Agate
Formula: SiO2
Quartz var: Jasper
Quartz var: Rock Crystal
Formula: SiO2
Quartz var: Smoky Quartz
Formula: SiO2
Localities: Reported from at least 9 localities in this region.
Ranciéite
Formula: (Ca,Mn2+)0.2(Mn4+,Mn3+)O2 · 0.6H2O
Rectorite
Formula: (Na,Ca)Al4((Si,Al)8O20)(OH)4 · 2H2O
Reevesite
Formula: Ni6Fe3+2(OH)16(CO3) · 4H2O
Reference: Birch, W.D., Samuels, L.E., Wasson, J.T. (2001) Willow grove: A unique nickel-rich ataxite from Victoria, Australia. Meteoritics and Planetary Science, 36, A247–A254.
'Retinite'
Reference: Hills, E. (1957) Fossiliferous Tertiary resin from Allendale, Victoria. Proc. Roy. Soc. Victoria, vol. 69 p15ff
Rhodochrosite
Formula: MnCO3
Description: "Rhodochrosite was first recorded in 1866 as 'diallogite' from the Port Phillip Company Mine. The rhodochrosite forms an attractive pinkish mauve to pinkish brown crust on manganese oxides coating quartz. Spherical globes up to 3 mm across occur, with broken surfaces showing a concentric growth structure."
Reference: D.A.Henry 1988. Minerals from the Clunes Goldfields. Australian Mineralogist Vol.3 April/June, 1988
Richterite
Formula: {Na}{NaCa}{Mg5}(Si8O22)(OH)2
Reference: Museum Victoria Mineralogy Collection
Rockbridgeite
Formula: Fe2+Fe3+4(PO4)3(OH)5
Localities: Reported from at least 8 localities in this region.
Rosasite
Formula: (Cu,Zn)2(CO3)(OH)2
Reference: Birch, W. D. & Mills, S. J. (2007) Sulphide–carbonate reaction in recrystallised limestone at Lilydale, Victoria, Australia: a new occurrence of phosphohedyphane, Australian Journal of Mineralogy, 13(2), 73–82.
Rucklidgeite
Formula: PbBi2Te4
Russellite
Formula: Bi2WO6
Rutile
Formula: TiO2
Localities: Reported from at least 23 localities in this region.
Rutile var: Ilmenorutile
Formula: Fex(Nb,Ta)2x · 4Ti1-xO2
Reference: Personally collected by Ryan Eagle in 2009
Saléeite
Formula: Mg(UO2)2(PO4)2 · 10H2O
Sampleite
Formula: NaCaCu5(PO4)4Cl · 5H2O
Description: "This is one of the most attractive of the rare phosphates at Lake Boga, occurring as vivid sky blue, micaceous aggregates on joint planes and platy to powdery cavity infillings in the granite. Groups of free standing tabular transparent blue crystals up to 0.5 mm high are frequently observed. Sampleite is most closely associated with pseudomalachite, but may also be found with libethenite, turquoise/chalcosiderite, cyrilovite and more rarely, ulrichite."
Reference: Henry, D. A. and Birch, W. D. (1988): Sampleite and associated minerals from the Lake Boga granite quarry, Victoria, Australia. Austral. Mineral. 3, 135-148; Giester, G., Kolitsch, U., Leverett, P., Turner, P. & Williams, P.A. (2007): The crystal structures of lavendulan, sampleite, and a new polymorph of sampleite. European Journal of Mineralogy 19, 75-93.; W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Sanidine
Formula: K(AlSi3O8)
Santabarbaraite
Formula: Fe3+3(PO4)2(OH)3 · 5H2O
Description: Santabarbarite has formed as a result of the oxidation of vivianite. "This involves progressive oxidation of Fe 2+ accompanied by conversion of H2O ligands to OH ions. Such a process leads to a gradual collapse of the vivianite structure as hydrogen bonds are eliminated. Santabarbaraite is the end product of this process. Santabarbaraite is brown to light brown in hand specimens but appears yellowish amber under the microscope.""
Reference: G. Pratesi, C. Cipriani, G. Giuli. & W. Birch (2003): Santabarbaraite: a new amorphous phosphate mineral.- Eur. J. Mineral. 15, 185-192
Sasaite
Formula: (Al,Fe3+)14(PO4)11(SO4)(OH)7 · 83H2O
Scheelite
Formula: Ca(WO4)
Localities: Reported from at least 9 localities in this region.
Schertelite (TL)
Formula: (NH4)2MgH2(PO4)2 · 4H2O
Type Locality:
Description: Occurs in small colourless flat crystals of somewhat indistinct character. The original material has been lost.
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 699; Clark, 1993 - "Hey's Mineral Index"; Mineralogical Magazine (1903): 376, 699.
Schorl
Formula: Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Localities: Reported from at least 26 localities in this region.
Schreibersite
Formula: (Fe,Ni)3P
Schumacherite
Formula: Bi3(VO4)2O(OH)
Reference: Mineralogical Record: 29: 164.; Frost, R. L., Henry, D. A., Weier, M. L., & Martens, W. (2006). Raman spectroscopy of three polymorphs of BiVO4: clinobisvanite, dreyerite and pucherite, with comparisons to (VO4) 3‐bearing minerals: namibite, pottsite and schumacherite. Journal of Raman Spectroscopy, 37(7), 722-732.
Scolecite ?
Formula: CaAl2Si3O10 · 3H2O
Scorodite
Formula: Fe3+AsO4 · 2H2O
Localities: Reported from at least 7 localities in this region.
Scorzalite
Formula: Fe2+Al2(PO4)2(OH)2
Segnitite
Formula: PbFe3+3AsO4(AsO3OH)(OH)6
Reference: Museum Victoria collection
Selwynite (TL)
Formula: NaK(Be,Al)Zr2(PO4)4 · 2H2O
Type Locality:
Habit: Has not been found in crystals
Colour: pale purple to purplish blue
Description: "This extremely rare mineral, a sodium beryllium zirconium phoshate, has been found in one of the pegmatite veins in the Wycherproof granite. It infills irregular cavities up to 8mm across, as deep purplish blue vitreous to fibrous masses and as granular pale purle aggregates mixed with limonite and muscovite. It may be associated with wardite and eosphorite."
Reference: CM 1995, 55-8; W.D.Birch. Phosphate Minerals of Victoria. The Mineralogical Society of Victoria special publication No. 3 pp. 28-32
'Selwynite (of Ulrich) '
Senarmontite
Formula: Sb2O3
'Serpentine Subgroup'
Formula: D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Siderite
Formula: FeCO3
Localities: Reported from at least 38 localities in this region.
Sideronatrite
Formula: Na2Fe(SO4)2(OH) · 3H2O
Reference: Mark Raven , Rob Fitzpatrick , Paul Shand and Stuart McClure, 2010, Minerals diagnostic of acid sulfate soils. Extended Abstracts – 21st Australian Clay Minerals Conference – Brisbane, August 2010 Rob Fitzpatrick, Paul Shand, Mark Raven and Stuart McClure, 2010, Occurrence and environmental significance of sideronatrite and other mineral precipitates in Acid Sulfate Soils. 19th World Congress of Soil Science, Soil Solutions for a Changing World
Siegenite
Formula: CoNi2S4
Reference: A. R. Seymon, 2006, Nickel Propectivity in Victoria, Geological Survey of Victoria Technical Record 2006/3
Sillimanite
Formula: Al2(SiO4)O
Silver
Formula: Ag
Localities: Reported from at least 6 localities in this region.
'Smectite Group'
Formula: A0.3D2-3[T4O10]Z2 · nH2O
Smithsonite
Formula: ZnCO3
Sperrylite
Formula: PtAs2
Reference: G.W.Cochrane 1982. Copper,Lead, Zinc and Barium deposits of Victoria, Geological Survey of Victoria, Bulletin No. 61, pp. 110-118
Spessartine
Formula: Mn2+3Al2(SiO4)3
Sphalerite
Formula: ZnS
Localities: Reported from at least 33 localities in this region.
Spinel
Formula: MgAl2O4
Localities: Reported from at least 10 localities in this region.
Spinel var: Pleonaste
Formula: (Mg,Fe)Al2O4
Spodumene
Formula: LiAlSi2O6
Reference: Ryan Eagle, Kim Dowling, Stafford McKnight (2018) Lithium mineralogy and petrogenetic differentiation of granitic pegmatites of the Dorchap Dyke Swarm, NE Victoria, Australia. in abstracts of the 22nd IMA Meeting Melbourne p 496
Stellerite
Formula: Ca4(Si28Al8)O72 · 28H2O
Stephanite
Formula: Ag5SbS4
Reference: A. R. Seymon, 2006, Nickel Propectivity in Victoria, Geological Survey of Victoria Technical Record 2006/3
Stercorite ?
Formula: Na(NH4)HPO4 · 4H2O
Description: MacIvor (1902) reported sodium ammonium monohydrogen orthophosphate in the aqueous extract separated from guano by repeated crystallisations. This may indicate transient existence of the mineral stercorite in the caves.
'Stibiconite'
Formula: Sb3+Sb5+2O6(OH)
Stibnite
Formula: Sb2S3
Localities: Reported from at least 33 localities in this region.
Stilbite-Na
Formula: (Na,Ca,K)6-7[Al8Si28O72] · nH2O
'Stilbite subgroup'
Localities: Reported from at least 14 localities in this region.
Stilpnomelane
Formula: (K,Ca,Na)(Fe2+,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
Strengite
Formula: FePO4 · 2H2O
Localities: Reported from at least 7 localities in this region.
Strunzite ?
Formula: Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Reference: Eagle, R. M., Birch, W. D., & McKnight, S. (2015). Phosphate minerals in granitic pegmatites from the Mount Wills District, north-eastern Victoria. Proceedings of the Royal Society of Victoria, 127(2), 55-68.
Struvite
Formula: (NH4)Mg(PO4) · 6H2O
Sulphotsumoite
Formula: Bi3Te2S
Sulphur
Formula: S8
Szmikite
Formula: MnSO4 · H2O
Description: "Szmikite is often in contact with the granite matrix. It forms white to very pale pink, opaque globular masses, which resemble billowing cumulus clouds under the microscope, although they tend to be dull and earthy appearance. Outlines of crystal faces seen on the surfaces of the roughly spherical aggregates making up the crusts may represent an earlier more hydrated sulphate, such as jokokuite. On some specimens, aggregates of well-formed tabular monoclinic crystals up to about 50 micron across can be detected by SEM."
Reference: Museum Victoria Mineralogy Collection; A suite of hydrated manganese sulfates from the Womobi mine, northern Victoria, Australia. W.D.Birch, 2013, Australian Journal of Mineralogy, 17/1.
Taenite
Formula: (Fe,Ni)
Talc
Formula: Mg3Si4O10(OH)2
Reference: EDWARDS, J., WOHLT, K.E., SLATER, K.R.,OLSHINA, A., AND HUTCHINSON, D.F., 1998. Heathcote and parts of Woodend and Echuca1:100 000 map area geological report. Geological Survey of Victoria Report 108.
Tamarugite
Formula: NaAl(SO4)2 · 6H2O
Reference: Segnit, E. R. "Tamarugite from Anglesea, Victoria, Australia." Mineral. Mag 40 (1976): 642-644.
Tantalite-(Mn)
Formula: Mn2+Ta2O6
Reference: Personally collected by Ryan Eagle in 2009
Taranakite
Formula: (K,NH4)Al3(PO4)3(OH) · 9H2O
Tennantite
Formula: Cu6[Cu4(Fe,Zn)2]As4S13
Reference: Crocodile Gold Corp (2013), Report on the Mineral Resources & Mineral Reserves of the Fosterville Gold Mine Victoria, Australia
Tetrahedrite
Formula: Cu6[Cu4(Fe,Zn)2]Sb4S13
Localities: Reported from at least 17 localities in this region.
Tetrahedrite var: Argentian Tetrahedrite
Formula: (Cu,Ag)6[Cu4(Fe,Zn)2]Sb4S13
Reference: W. D. Birch (1981) Silver Sulphosalts from the Meerschaum Mine, Mt. Wills, Victoria, Australia. Mineralogical Magazine 44:73-78.
'Thomsonite'
Thomsonite-Ca
Formula: NaCa2[Al5Si5O20] · 6H2O
Localities: Reported from at least 17 localities in this region.
Thorianite
Formula: ThO2
'Thunder Egg'
Reference: Birch, W.D. and Henry, D.A. (1999) Gem Minerals of Victoria. Mineralogical Society of Victoria - Special Publication No.4 (120 pages).
Titanite
Formula: CaTi(SiO4)O
Localities: Reported from at least 6 localities in this region.
Tobermorite ?
Formula: [Ca4Si6O17 · 2H2O]·(Ca·3H2O)
Reference: Aust.Jour. Earth Sci. 46:251 (1999)
Tochilinite
Formula: Fe2+5-6(Mg,Fe2+)5S6(OH)10
Reference: Ma, C., Beckett, J.R., Rossman, G.R. (2010): Discovery of a new chromium sulfide mineral, Cr5S6, in Murchison. 73rd Annual Meteoritical Society Meeting, 2010; Palmer, E.E. & Lauretta, D.S. (Oct 2011) Aqueous alteration of kamacite in CM chondrites: Meteoritics & Planetary Science: 46 (10): 1587-1607 (Oct 2011)
Topaz
Formula: Al2(SiO4)(F,OH)2
Localities: Reported from at least 14 localities in this region.
Torbernite
Formula: Cu(UO2)2(PO4)2 · 12H2O
'Tourmaline'
Formula: A(D3)G6(T6O18)(BO3)3X3Z
Localities: Reported from at least 14 localities in this region.
Trechmannite
Formula: AgAsS2
Reference: A. R. Seymon, 2006, Nickel Propectivity in Victoria, Geological Survey of Victoria Technical Record 2006/3
Tremolite
Formula: ☐{Ca2}{Mg5}(Si8O22)(OH)2
Tridymite
Formula: SiO2
Triphylite
Formula: LiFe2+PO4
Reference: Ryan Eagle, Kim Dowling, Stafford McKnight (2018) Lithium mineralogy and petrogenetic differentiation of granitic pegmatites of the Dorchap Dyke Swarm, NE Victoria, Australia. in abstracts of the 22nd IMA Meeting Melbourne p 496
Triplite
Formula: (Mn2+,Fe2+)2(PO4)(F,OH)
Troilite
Formula: FeS
Tsumoite
Formula: BiTe
Turquoise
Formula: Cu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
Localities: Reported from at least 12 localities in this region.
Ulrichite (TL)
Formula: CaCu(UO2)(PO4)2 · 4H2O
Type Locality:
Description: "This attractive mineral was first collected at the Lake Boga quarry in the mid-1980s. A zone a few metres across at the base of the east wall of the quarry, at a depth of around 20 metres has yielded all the ulrichite so far collected. Ulrichite forms delicate radiating sprays of translucent to transparent, pale green to bright lime green, needle-like crystals up to 1 mm long and 0.05 mm thick. They occur in small close up, irregular miarolitic cavities in a fine-grained equigranular phase of the Lake Boga granite. Some of the cavities are lined or partly filled with a glistening reddish brown clay mineral. Ulrichite is amongst the earliest of the secondary minerals to crystalise at Lake Boga and occurs most frequently with turquoise/chalcosiderite. It is also observed with cyrilovite, libethenite, pseudomalachite and rarely, with torbernite. It has also been found on etched fluorapatite crystals."
Reference: Birch, W.D., Mumme, W.G., and Segnit, E.R. (1988) Ulrichite: a new copper calcium uranium phosphate from Lake Boga, Victoria, Australia. Australian Mineralogist, 3(3), 125-131.; England, B.M. (1991) The State of the Science: Scanning Electron Microscopy. Mineralogical Record, 22(2), 123-132 (SEM image of ulrichite on quartz from the Lake Boga quarry on p. 127).; Clark, A.M. (1993) Hey's mineral index: mineral species, varieties, and synonyms.; Birch, W.D. and Henry, D.A. (1993) Phosphate Minerals of Victoria. The Mineralogical Society of Victoria special publication N°. 3, 14-27.; Henry, D.A. and Birch, W.D. (1998) Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, 135-148.
Ulvöspinel
Formula: TiFe2O4
Reference: Eagle, R. (2009) . Petrology, petrogenesis and mineralisation of the Silurian pegmatites of the Mount Wills district, northeastern Victoria. B.Sc (Hons) thesis, University of Ballarat (unpubl.)
Uraninite
Formula: UO2
'Uvite Series'
Formula: Ca(Mg3)MgAl5(Si6O18)(BO3)3(OH)3(F/OH)
Valentinite
Formula: Sb2O3
Valleriite
Formula: (Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
Description: "Valleriite is only recorded as rare minute inclusions in chalcopyrite grains in the Cu-Ni mineralization in the Morning Star Mine."
Reference: Bussat, F, (1980) Minerals from some mines in the Woods Point district, Victoria, The Australian Mineralogist No. 31, July 1980, pp. 147-152.
Variscite
Formula: AlPO4 · 2H2O
Localities: Reported from at least 7 localities in this region.
Vesuvianite
Formula: (Ca,Na,☐)19(Al,Mg,Fe3+)13(☐,B,Al,Fe3+)5(Si2O7)4(SiO4)10(OH,F,O)10
Violarite
Formula: Fe2+Ni3+2S4
Vivianite
Formula: Fe2+3(PO4)2 · 8H2O
Localities: Reported from at least 15 localities in this region.
Wardite
Formula: NaAl3(PO4)2(OH)4 · 2H2O
Description: "It forms blocky crystals up to 2mm across showing pyramidal forms, occasionally etched, and with a frosting of cyrilovite. Broken crystals are vitreous, transparent and pale yellow. Eosphorite crystals are usually associated with the wardite."
Reference: W.D.Birch. Phosphate Minerals of Victoria. The Mineralogical Society of Victoria special publication No. 3 pp. 28-32
Warkite (TL)
Formula: Ca2Sc6Al6O20
Type Locality:
Reference: Ma, C., Krot, A.N., Nagashima, K. and Tschauner, O. (2014) Warkite, IMA 2013- 129. CNMNC Newsletter No. 20, June 2014, page 552; Mineralogical Magazine, 78, 549-558.
Wavellite
Formula: Al3(PO4)2(OH,F)3 · 5H2O
Localities: Reported from at least 10 localities in this region.
Whewellite
Formula: Ca(C2O4) · H2O
Reference: Louis H. Fuchs, Kenneth J. Jensen & Edward Olsen (1970). Mineralogy and Composition of the Murchison Meteorite. Meteoritics 5, #4, p. 198. (Dec 1970).
'Whiteite'
Whitmoreite
Formula: Fe2+Fe3+2(PO4)2(OH)2 · 4H2O
Winchite
Formula: ☐{CaNa}{Mg4Al}(Si8O22)(OH)2
Description: Microprobe analysis by Spaggiari et al.(2002) corresponds to the following composition: (Na0.329K0.007)0.336(Na0.774Ca0.877Mn0.022Fe2+0.327)2.00(Mg3.169Fe2+1.660Cr0.005Al0.156Ti0.011)5.00Si8.064O22(OH)2
Reference: C. V. Spaggiari,  D. R. Gray and D. A. Foster(2002): Blueschist metamorphism during accretion in the Lachlan Orogen, south-eastern Australia, Journal of Metamorphic Geology, volume 20, Issue 8, pages 711–726,
Wittichenite
Formula: Cu3BiS3
Wolfeite
Formula: (Fe2+,Mn2+)2(PO4)(OH)
'Wolframite'
Formula: (Fe2+)WO4 to (Mn2+)WO4
Localities: Reported from at least 9 localities in this region.
Wollastonite
Formula: CaSiO3
Reference: Aust.Jour. Earth Sci. 46:251 (1999)
Wulfenite
Formula: Pb(MoO4)
Reference: No reference listed
Wycheproofite (TL)
Formula: NaAlZr(PO4)2(OH) · H2O
Type Locality:
Description: "It forms compact, cream to pinkish orange, fibrous masses filling small cavities in one of the pegmatite veins at Wycheproof. It has a vitreous lustre and is softer than feldspar with witch it may be confused."
Reference: MinRec 27:204; MM 1995, 653-9; R&M. 71:160-161 (1996); W.D.Birch. Phosphate Minerals of Victoria. The Mineralogical Society of Victoria special publication No. 3 pp. 28-32
Xanthoconite
Formula: Ag3AsS3
Reference: A. R. Seymon, 2006, Nickel Propectivity in Victoria, Geological Survey of Victoria Technical Record 2006/3
'Xenotime'
Reference: Eagle, R. M., Birch, W. D., & McKnight, S. (2015). Phosphate minerals in granitic pegmatites from the Mount Wills District, north-eastern Victoria. Proceedings of the Royal Society of Victoria, 127(2), 55-68.
Xenotime-(Y)
Formula: Y(PO4)
Localities: Reported from at least 7 localities in this region.
Xonotlite
Formula: Ca6(Si6O17)(OH)2
Reference: Aust.Jour. Earth Sci. 46:251 (1999)
Zinc
Formula: Zn
Reference: Aust Jnl Mineralogy 7(1) 2001
Zinkenite
Formula: Pb9Sb22S42
Zircon
Formula: Zr(SiO4)
Localities: Reported from at least 34 localities in this region.
Zoubekite ?
Formula: AgPb4Sb4S10
Reference: Birch, W. D. (2017). Mineralogy of the Silver King deposit, Omeo, Victoria. Proceedings of the Royal Society of Victoria, 129(1), 41-52.
Zwieselite
Formula: (Fe2+,Mn2+)2(PO4)F

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Antimony1.CA.05Sb
Arsenic1.CA.05As
Bismuth1.CA.05Bi
Cohenite1.BA.05Fe3C
Copper1.AA.05Cu
Diamond1.CB.10aC
'Electrum'1.AA.05(Au, Ag)
Gold1.AA.05Au
Graphite1.CB.05aC
var: Cliftonite1.CB.05aC
Iron1.AE.05Fe
var: Kamacite1.AE.05(Fe,Ni)
var: Martensite1.AE.05Fe
Mercury1.AD.05Hg
Nierite1.DB.05Si3N4
Schreibersite1.BD.05(Fe,Ni)3P
Silver1.AA.05Ag
Sulphur1.CC.05S8
Taenite1.AE.10(Fe,Ni)
Zinc1.AB.05Zn
Group 2 - Sulphides and Sulfosalts
Acanthite2.BA.35Ag2S
Aikinite2.HB.05aPbCuBiS3
Arsenopyrite2.EB.20FeAsS
Aurostibite2.EB.05aAuSb2
Berthierite2.HA.20FeSb2S4
Bismuthinite2.DB.05Bi2S3
Bornite2.BA.15Cu5FeS4
Boulangerite2.HC.15Pb5Sb4S11
Bournonite2.GA.50PbCuSbS3
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Cinnabar2.CD.15aHgS
Cobaltite2.EB.25CoAsS
Covellite2.CA.05aCuS
Cubanite2.CB.55aCuFe2S3
Daubréelite2.DA.05Fe2+Cr3+2S4
Digenite2.BA.10Cu9S5
Djurleite2.BA.05Cu31S16
Enargite2.KA.05Cu3AsS4
Freibergite2.GB.05Ag6[Cu4Fe2]Sb4S13-x
Galena2.CD.10PbS
Geerite2.BA.05Cu8S5
Gersdorffite2.EB.25NiAsS
Hedleyite2.DC.05Bi7Te3
Jamesonite2.HB.15Pb4FeSb6S14
Jonassonite2.LA.65AuBi5S4
Joséite-B2.DC.05Bi4Te2S
Kermesite2.FD.05Sb2S2O
Löllingite2.EB.15aFeAs2
Maldonite (TL)2.AA.40Au2Bi
Marcasite2.EB.10aFeS2
Merenskyite2.EA.20(Pd,Pt)(Te,Bi)2
Metacinnabar2.CB.05aHgS
Miargyrite2.HA.10AgSbS2
Millerite2.CC.20NiS
Molybdenite2.EA.30MoS2
Owyheeite2.HC.35Ag3+xPb10-2xSb11+xS28, -0.13 < x > +0.20
Pentlandite2.BB.15(FexNiy)Σ9S8
Polydymite2.DA.05Ni2+Ni3+2S4
Proustite2.GA.05Ag3AsS3
Pyrargyrite2.GA.05Ag3SbS3
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe7S8
Rucklidgeite2.GC.40cPbBi2Te4
Siegenite2.DA.05CoNi2S4
Sperrylite2.EB.05aPtAs2
Sphalerite2.CB.05aZnS
Stephanite2.GB.10Ag5SbS4
Stibnite2.DB.05Sb2S3
Sulphotsumoite2.DC.05Bi3Te2S
Tennantite2.GB.05Cu6[Cu4(Fe,Zn)2]As4S13
Tetrahedrite2.GB.05Cu6[Cu4(Fe,Zn)2]Sb4S13
var: Argentian Tetrahedrite2.GB.05(Cu,Ag)6[Cu4(Fe,Zn)2]Sb4S13
Tochilinite2.FD.35Fe2+5-6(Mg,Fe2+)5S6(OH)10
Trechmannite2.GC.35AgAsS2
Troilite2.CC.10FeS
Tsumoite2.DC.05BiTe
Valleriite2.FD.30(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
Violarite2.DA.05Fe2+Ni3+2S4
Wittichenite2.GA.20Cu3BiS3
Xanthoconite2.GA.10Ag3AsS3
Zinkenite2.JB.35aPb9Sb22S42
Zoubekite ?2.HC.35AgPb4Sb4S10
Group 3 - Halides
Atacamite3.DA.10aCu2(OH)3Cl
Bismoclite3.DC.25BiOCl
Chlorargyrite3.AA.15AgCl
var: Bromian Chlorargyrite3.AA.15Ag(Cl,Br)
Connellite3.DA.25Cu19(SO4)(OH)32Cl4 · 3H2O
Fluorite3.AB.25CaF2
Halite3.AA.20NaCl
Iodargyrite3.AA.10AgI
Paratacamite3.DA.10cCu3(Cu,Zn)(OH)6Cl2
Group 4 - Oxides and Hydroxides
Anatase4.DD.05TiO2
Birnessite4.FL.45(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Bismite4.CB.60Bi2O3
Brookite4.DD.10TiO2
Cassiterite4.DB.05SnO2
Cervantite4.DE.30Sb3+Sb5+O4
Chalcophanite4.FL.20(Zn,Fe,Mn)Mn3O7 · 3H2O
Chromite4.BB.05Fe2+Cr3+2O4
Chrysoberyl4.BA.05BeAl2O4
Claudetite4.CB.45As2O3
Columbite-(Fe)4.DB.35Fe2+Nb2O6
Corundum4.CB.05Al2O3
var: Barklyite (TL)4.CB.05Al2O3
var: Ruby4.CB.05Al2O3
var: Sapphire4.CB.05Al2O3
Cristobalite4.DA.15SiO2
Cuprite4.AA.10Cu2O
Diaspore4.FD.10AlO(OH)
Eskolaite4.CB.05Cr2O3
Ferberite4.DB.30FeWO4
Goethite4.00.α-Fe3+O(OH)
Grossite4.CC.15CaAl4O7
Hematite4.CB.05Fe2O3
Hibonite4.CC.45(Ca,Ce)(Al,Ti,Mg)12O19
Hydrokenoelsmoreite4.DH.152W2O6(H2O)
var: Ferritungstite4.DH.152W2O6(H2O)
Hübnerite4.DB.30MnWO4
Ilmenite4.CB.05Fe2+TiO3
Koechlinite4.DE.15Bi2MoO6
Lechatelierite ?4.DA.30SiO2
Lepidocrocite4.FE.15γ-Fe3+O(OH)
Lime4.AB.25CaO
Lithiophorite4.FE.25(Al,Li)MnO2(OH)2
Maghemite4.BB.15Fe3+2O3
Magnetite4.BB.05Fe2+Fe3+2O4
var: Aluminous Magnetite4.BB.05Fe2+Fe3+2O4
var: Titaniferous Magnetite4.BB.05Fe2+(Fe3+,Ti)2O4
'Microlite Group'4.00.A2-mTa2X6-wZ-n
'var: Uranmicrolite (of Hogarth 1977)'4.00.A2-mTa2X6-wZ-n
Molybdite4.E0.10MoO3
Opal4.DA.10SiO2 · nH2O
var: Opal-AN4.DA.10SiO2 · nH2O
Perovskite4.CC.30CaTiO3
Pittongite (TL)4.DH.45Na0.22(W,Fe3+)(O,OH)3 · 0.44H2O
Portlandite4.FE.05Ca(OH)2
Pseudobrookite4.CB.15Fe2TiO5
Pseudorutile4.CB.25Fe2Ti3O9
var: Hydroxylian Pseudorutile4.CB.25FeTi6O13 · 4H2O ?
Pyrolusite4.DB.05Mn4+O2
Quartz4.DA.05SiO2
var: Agate4.DA.05SiO2
var: Amethyst4.DA.05SiO2
var: Carnelian4.DA.05SiO2
var: Chalcedony4.DA.05SiO2
var: Citrine4.DA.05SiO2
var: Darlingite (TL)4.DA.05SiO2
var: Enhydro Agate4.DA.05SiO2
var: Eye Agate4.DA.05SiO2
var: Jasper4.DA.05SiO2
var: Rock Crystal4.DA.05SiO2
var: Smoky Quartz4.DA.05SiO2
Ranciéite4.FL.40(Ca,Mn2+)0.2(Mn4+,Mn3+)O2 · 0.6H2O
Russellite4.DE.15Bi2WO6
Rutile4.DB.05TiO2
var: Ilmenorutile4.DB.05Fex(Nb,Ta)2x · 4Ti1-xO2
Senarmontite4.CB.50Sb2O3
Spinel4.BB.05MgAl2O4
var: Pleonaste4.BB.05(Mg,Fe)Al2O4
'Stibiconite'4.DH.20Sb3+Sb5+2O6(OH)
Tantalite-(Mn)4.DB.35Mn2+Ta2O6
Thorianite4.DL.05ThO2
Tridymite4.DA.10SiO2
Ulvöspinel4.BB.05TiFe2O4
Uraninite4.DL.05UO2
Valentinite4.CB.55Sb2O3
Group 5 - Nitrates and Carbonates
Ankerite5.AB.10Ca(Fe2+,Mg)(CO3)2
Aragonite5.AB.15CaCO3
Aurichalcite5.BA.15(Zn,Cu)5(CO3)2(OH)6
Azurite5.BA.05Cu3(CO3)2(OH)2
Bismutite5.BE.25(BiO)2CO3
Calcite5.AB.05CaCO3
var: Ferroan Calcite5.AB.05(Ca,Fe)CO3
Cerussite5.AB.15PbCO3
Dolomite5.AB.10CaMg(CO3)2
var: Ferroan Dolomite5.AB.10Ca(Mg,Fe)(CO3)2
Huntite5.AB.25CaMg3(CO3)4
Magnesite5.AB.05MgCO3
Malachite5.BA.10Cu2(CO3)(OH)2
Reevesite5.DA.50Ni6Fe3+2(OH)16(CO3) · 4H2O
Rhodochrosite5.AB.05MnCO3
Rosasite5.BA.10(Cu,Zn)2(CO3)(OH)2
Siderite5.AB.05FeCO3
Smithsonite5.AB.05ZnCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Alunite7.BC.10KAl3(SO4)2(OH)6
Alunogen7.CB.45Al2(SO4)3 · 17H2O
Anglesite7.AD.35PbSO4
Baryte7.AD.35BaSO4
Brochantite7.BB.25Cu4(SO4)(OH)6
Celestine7.AD.35SrSO4
Chalcanthite7.CB.20CuSO4 · 5H2O
Epsomite7.CB.40MgSO4 · 7H2O
Felsőbányaite7.DD.05Al4(SO4)(OH)10 · 4H2O
Ferrimolybdite7.GB.30Fe2(MoO4)3 · nH2O
Fibroferrite7.DC.15Fe3+(SO4)(OH) · 5H2O
Glauberite7.AD.25Na2Ca(SO4)2
Gypsum7.CD.40CaSO4 · 2H2O
var: Selenite7.CD.40CaSO4 · 2H2O
Halotrichite7.CB.85FeAl2(SO4)4 · 22H2O
Hexahydrite7.CB.25MgSO4 · 6H2O
Ilesite7.CB.15(Mn,Zn,Fe)SO4 · 4H2O
Jarosite7.BC.10KFe3+ 3(SO4)2(OH)6
Jôkokuite7.CB.20MnSO4 · 5H2O
Manganoblödite7.00.Na2Mn(SO4)2·4H2O
Melanterite7.CB.35Fe2+(H2O)6SO4 · H2O
Natrojarosite7.BC.10NaFe3(SO4)2(OH)6
Pickeringite7.CB.85MgAl2(SO4)4 · 22H2O
Powellite7.GA.05Ca(MoO4)
Scheelite7.GA.05Ca(WO4)
Sideronatrite7.DF.20Na2Fe(SO4)2(OH) · 3H2O
Szmikite7.CB.05MnSO4 · H2O
Tamarugite7.CC.10NaAl(SO4)2 · 6H2O
Wulfenite7.GA.05Pb(MoO4)
Group 8 - Phosphates, Arsenates and Vanadates
Alluaudite8.AC.10(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Amblygonite8.BB.05LiAl(PO4)F
Arrojadite-(KFe)8.BF.05{KNa}{Fe2+◻}{Ca}{Na2◻}{Fe2+13}{Al}(PO4)11(HPO4)(OH)2
Autunite8.EB.05Ca(UO2)2(PO4)2 · 11H2O
Bariopharmacosiderite8.DK.10Ba0.5Fe3+4(AsO4)3(OH)4 · 5H2O
Beraunite8.DC.27Fe2+Fe3+5(PO4)4(OH)5 · 6H2O
Bertossaite8.BH.25(Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4
Betpakdalite-FeFe (TL)8.DM.[Fe3+2 (H2O)15(OH)2Fe3+(H2O)6][Mo8As2Fe3+3 O37]
Beudantite8.BL.05PbFe3(AsO4)(SO4)(OH)6
Bleasdaleite (TL)8.DK.25(Ca,Fe3+)2Cu5(Bi,Cu)(PO4)4(H2O,OH,Cl)13
Brazilianite8.BK.05NaAl3(PO4)2(OH)4
Brushite8.CJ.50Ca(HPO4) · 2H2O
Cacoxenite8.DC.40Fe3+24AlO6(PO4)17(OH)12 · 75H2O
Chalcosiderite8.DD.15CuFe3+6(PO4)4(OH)8 · 4H2O
Cheralite8.AD.50CaTh(PO4)2
Crandallite8.BL.10CaAl3(PO4)(PO3OH)(OH)6
Cyrilovite8.DL.10NaFe3+3(PO4)2(OH)4 · 2H2O
Descloizite8.BH.40PbZn(VO4)(OH)
Dittmarite (TL)8.CH.20(NH4)Mg(PO4) · H2O
Dufrénite8.DK.15Ca0.5Fe2+Fe3+5(PO4)4(OH)6 · 2H2O
Eosphorite8.DD.20Mn2+Al(PO4)(OH)2 · H2O
Faustite8.DD.15(Zn,Cu)Al6(PO4)4(OH)8 · 4H2O
Fluellite8.DE.10Al2(PO4)F2(OH) · 7H2O
Fluorapatite8.BN.05Ca5(PO4)3F
var: Carbonate-rich Fluorapatite8.BN.05Ca5(PO4,CO3)3(F,O)
var: Mn-bearing Fluorapatite8.BN.05(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Gorceixite8.BL.10BaAl3(PO4)(PO3OH)(OH)6
Gordonite8.DC.30MgAl2(PO4)2(OH)2 · 8H2O
Goyazite8.BL.10SrAl3(PO4)(PO3OH)(OH)6
var: Barian Goyazite8.BL.10(Sr,Ba)Al3(PO4)2(OH)5 · H2O
Hannayite (TL)8.CH.35(NH4)2Mg3H4(PO4)4 · 8H2O
Hechtsbergite8.BO.15Bi2(VO4)O(OH)
Heterosite8.AB.10(Fe3+,Mn3+)PO4
Hidalgoite8.BL.05PbAl3(AsO4)(SO4)(OH)6
Hydroxylapatite8.BN.05Ca5(PO4)3(OH)
Keckite8.DH.15CaMn2+(Fe3+Mn2+)Fe3+2(PO4)4(OH)3 · 7H2O
Kidwellite8.DK.20NaFe3+9+x(PO4)6(OH)11 · 3H2O, x = 0.33
Kosnarite8.AC.60KZr2(PO4)3
Kryzhanovskite8.CC.05(Fe3+,Mn2+)3(PO4)2(OH,H2O)3
Kunatite (TL)8.DC.15CuFe3+2(PO4)2(OH)2 · 4H2O
Lacroixite8.BH.10NaAl(PO4)F
Lakebogaite (TL)8.EA.20CaNaFe3+2H(UO2)2(PO4)4(OH)2 · 8H2O
Lavendulan8.DG.05NaCaCu5(AsO4)4Cl · 5H2O
Lazulite8.BB.40MgAl2(PO4)2(OH)2
Leucophosphite8.DH.10KFe3+2(PO4)2(OH) · 2H2O
Libethenite8.BB.30Cu2(PO4)(OH)
Merrillite8.AC.45Ca9NaMg(PO4)7
Meta-autunite8.EB.10Ca(UO2)2(PO4)2 · 6-8H2O
Metatorbernite8.EB.10Cu(UO2)2(PO4)2 · 8H2O
Meurigite-K8.DJ.20KFe3+8(PO4)6(OH)7 · 6.5H2O
Meurigite-Na8.DJ.20NaFe3+8(PO4)6(OH)7 · 6.5H2O
Mimetite8.BN.05Pb5(AsO4)3Cl
Monazite-(Ce)8.AD.50Ce(PO4)
Montebrasite8.BB.05LiAl(PO4)(OH)
Montgomeryite8.DH.25Ca4MgAl4(PO4)6(OH)4 · 12H2O
Mrázekite8.DJ.40Bi2Cu3(PO4)2O2(OH)2 · H2O
Namibite8.BB.50Cu(BiO)2(VO4)(OH)
Natrodufrénite8.DK.15NaFe2+Fe3+5(PO4)4(OH)6 · 2H2O
Natropharmacosiderite8.DK.10(Na,K)Fe3+4(AsO4)3(OH)4 · 6-7H2O
Newberyite (TL)8.CE.10Mg(HPO4) · 3H2O
Parwanite (TL)8.DO.40(Na,K)(Mg,Ca)4Al8(PO4)8(CO3)(OH)7 · 30H2O
Pharmacosiderite8.DK.10KFe3+4(AsO4)3(OH)4 · 6-7H2O
Philipsbornite8.BL.10PbAl3(AsO4)(AsO3OH)(OH)6
Phosphoferrite8.CC.05(Fe2+,Mn2+)3(PO4)2 · 3H2O
Phosphohedyphane8.BN.05Ca2Pb3(PO4)3Cl
Phosphosiderite8.CD.05FePO4 · 2H2O
Phosphuranylite8.EC.10(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
Planerite8.DD.15Al6(PO4)2(HPO4)2(OH)8 · 4 H2O
Plumbogummite8.BL.10PbAl3(PO4)(PO3OH)(OH)6
Pseudomalachite8.BD.05Cu5(PO4)2(OH)4
Pucherite8.AD.40Bi(VO4)
Purpurite8.AB.10(Mn3+,Fe3+)PO4
Pyromorphite8.BN.05Pb5(PO4)3Cl
Rockbridgeite8.BC.10Fe2+Fe3+4(PO4)3(OH)5
Saléeite8.EB.05Mg(UO2)2(PO4)2 · 10H2O
Sampleite8.DG.05NaCaCu5(PO4)4Cl · 5H2O
Santabarbaraite8.CE.80Fe3+3(PO4)2(OH)3 · 5H2O
Sasaite8.DB.55(Al,Fe3+)14(PO4)11(SO4)(OH)7 · 83H2O
Schertelite (TL)8.CH.30(NH4)2MgH2(PO4)2 · 4H2O
Schumacherite8.BO.10Bi3(VO4)2O(OH)
Scorodite8.CD.10Fe3+AsO4 · 2H2O
Scorzalite8.BB.40Fe2+Al2(PO4)2(OH)2
Segnitite8.BL.10PbFe3+3AsO4(AsO3OH)(OH)6
Selwynite (TL)8.CA.20NaK(Be,Al)Zr2(PO4)4 · 2H2O
Stercorite ?8.CJ.05Na(NH4)HPO4 · 4H2O
Strengite8.CD.10FePO4 · 2H2O
Strunzite ?8.DC.25Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Struvite8.CH.40(NH4)Mg(PO4) · 6H2O
Taranakite8.CH.25(K,NH4)Al3(PO4)3(OH) · 9H2O
Torbernite8.EB.05Cu(UO2)2(PO4)2 · 12H2O
Triphylite8.AB.10LiFe2+PO4
Triplite8.BB.10(Mn2+,Fe2+)2(PO4)(F,OH)
Turquoise8.DD.15Cu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
Ulrichite (TL)8.EA.15CaCu(UO2)(PO4)2 · 4H2O
Variscite8.CD.10AlPO4 · 2H2O
Vivianite8.CE.40Fe2+3(PO4)2 · 8H2O
Wardite8.DL.10NaAl3(PO4)2(OH)4 · 2H2O
Wavellite8.DC.50Al3(PO4)2(OH,F)3 · 5H2O
Whitmoreite8.DC.15Fe2+Fe3+2(PO4)2(OH)2 · 4H2O
Wolfeite8.BB.15(Fe2+,Mn2+)2(PO4)(OH)
Wycheproofite (TL)8.DJ.30NaAlZr(PO4)2(OH) · H2O
Xenotime-(Y)8.AD.35Y(PO4)
Zwieselite8.BB.10(Fe2+,Mn2+)2(PO4)F
Group 9 - Silicates
Actinolite9.DE.10☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Aegirine9.DA.25NaFe3+Si2O6
Aegirine-augite9.DA.20(NaaCabFe2+cMgd)(Fe3+eAlfFe2+gMgh)Si2O6
Albite9.FA.35Na(AlSi3O8)
var: Andesine9.FA.35(Na,Ca)[Al(Si,Al)Si2O8]
var: Oligoclase9.FA.35(Na,Ca)[Al(Si,Al)Si2O8]
Allanite-(Ce)9.BG.05b{CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH)
Allophane9.ED.20(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Almandine9.AD.25Fe2+3Al2(SiO4)3
Analcime9.GB.05Na(AlSi2O6) · H2O
Andalusite9.AF.10Al2(SiO4)O
Andradite9.AD.25Ca3Fe3+2(SiO4)3
Annite9.EC.20KFe2+3(AlSi3O10)(OH)2
Anorthite9.FA.35Ca(Al2Si2O8)
'Anorthoclase'9.FA.30(Na,K)AlSi3O8
Antigorite9.ED.15Mg3(Si2O5)(OH)4
Augite9.DA.15(CaxMgyFez)(Mgy1Fez1)Si2O6
var: Fassaite9.DA.15(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
var: Titanian Augite9.DA.15(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
Axinite-(Fe)9.BD.20Ca2Fe2+Al2BSi4O15OH
Axinite-(Mn)9.BD.20Ca2Mn2+Al2BSi4O15(OH)
Babingtonite9.DK.05Ca2(Fe,Mn)FeSi5O14(OH)
Beryl9.CJ.05Be3Al2(Si6O18)
Bultfonteinite9.AG.80Ca2(HSiO4)F · H2O
Chabazite-Ca9.GD.10(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
Chabazite-K9.GD.10(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Chabazite-Na9.GD.10(Na2,K2,Ca,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Chrysocolla9.ED.20Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Clinochlore9.EC.55Mg5Al(AlSi3O10)(OH)8
'Clinochrysotile'9.ED.
Clinoenstatite9.DA.10MgSiO3
Clinozoisite9.BG.05a{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Cookeite9.EC.55(Al2Li)Al2(AlSi3O10)(OH)8
Cordierite9.CJ.10(Mg,Fe)2Al3(AlSi5O18)
Cowlesite9.GG.05CaAl2Si3O10 · 6H2O
Cronstedtite9.ED.15Fe2+2Fe3+((Si,Fe3+)2O5)(OH)4
Cuspidine9.BE.17Ca4(Si2O7)(F,OH)2
Danburite9.FA.65CaB2Si2O8
Datolite9.AJ.20CaB(SiO4)(OH)
Dickite9.ED.05Al2(Si2O5)(OH)4
Diopside9.DA.15CaMgSi2O6
var: Chromian Diopside9.DA.15Ca(Mg,Cr)Si2O6
Dravite9.CK.05Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Dumortierite9.AJ.10(Al,Fe3+)7(SiO4)3(BO3)O3
Elbaite9.CK.05Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Enstatite9.DA.05MgSiO3
Epidote9.BG.05a{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Erionite-Ca9.GD.20(Ca,K2,Na2)2[Al4Si14O36] · 15H2O
Erionite-Na9.GD.20(Na2,K2,Ca)2[Al4Si14O36] · 15H2O
Eulytine9.AD.40Bi4(SiO4)3
Fayalite9.AC.05Fe2+2SiO4
Ferrierite-Mg9.GD.50(Mg,Na2,K2,Ca)3-5Mg[Al5-7Si27.5-31O72] · 18H2O
'Ferro-kaersutite'9.DE.15{Na}{Ca2}{Fe2+3AlTi}(Al2Si6O22)O2
Ferro-tschermakite9.DE.10☐{Ca2}{Fe2+3Al2}(Al2Si6O22)(OH)2
Ferrosilite9.DA.05FeSiO3
Fluor-schorl9.CK.Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3F
Fluorapophyllite-(K)9.EA.15KCa4(Si8O20)(F,OH) · 8H2O
Forsterite9.AC.05Mg2SiO4
Foshagite9.DG.15Ca4(Si3O9)(OH)2
Glaucophane9.DE.25◻[Na2][Mg3Al2]Si8O22(OH)2
Gmelinite-Na9.GD.05Na4(Si8Al4O24] · 11H2O
Gobbinsite9.GC.05Na5(Si11Al5)O32 · 11H2O
Gonnardite9.GA.05(Na,Ca)2(Si,Al)5O10 · 3H2O
Greenalite9.ED.15(Fe2+,Fe3+)2-3Si2O5(OH)4
Grossular9.AD.25Ca3Al2(SiO4)3
'Halloysite'9.ED.10Al2(Si2O5)(OH)4
Hedenbergite ?9.DA.15CaFe2+Si2O6
Hemimorphite9.BD.10Zn4Si2O7(OH)2 · H2O
Heulandite-Ca9.GE.05(Ca,Na)5(Si27Al9)O72 · 26H2O
Hisingerite9.ED.10Fe3+2(Si2O5)(OH)4 · 2H2O
Huttonite9.AD.35ThSiO4
Kaersutite9.DE.15{Na}{Ca2}{Mg3AlTi}(Al2Si6O22)O2
Kaolinite9.ED.05Al2(Si2O5)(OH)4
'Labradorite'9.FA.35(Ca,Na)[Al(Al,Si)Si2O8]
Laumontite9.GB.10CaAl2Si4O12 · 4H2O
Leucite9.GB.05K(AlSi2O6)
Lizardite9.ED.15Mg3(Si2O5)(OH)4
Lévyne-Ca9.GD.15(Ca,Na2,K2)[Al2Si4O12] · 6H2O
Lévyne-Na9.GD.15(Na2,Ca,K2)[Al2Si4O12] · 6H2O
Mesolite9.GA.05Na2Ca2Si9Al6O30 · 8H2O
Microcline9.FA.30K(AlSi3O8)
Minnesotaite9.EC.05Fe2+3Si4O10(OH)2
Montmorillonite9.EC.40(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Fuchsite9.EC.15K(Al,Cr)3Si3O10(OH)2
var: Illite9.EC.15K0.65Al2.0[Al0.65Si3.35O10](OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Natrolite9.GA.05Na2Al2Si3O10 · 2H2O
var: Mooraboolite9.GA.05Na2Al2Si3O10 · 2H2O
Nepheline9.FA.05Na3K(Al4Si4O16)
Nontronite9.EC.40Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Offretite9.GD.25KCaMg(Si13Al5)O36 · 15H2O
Omphacite9.DA.20(NaaCabFe2+cMgd)(AleFe3+fFe2+gMgh)Si2O6
Orthoclase9.FA.30K(AlSi3O8)
Palygorskite9.EE.20(Mg,Al)5(Si,Al)8O20(OH)2 · 8H2O
Pargasite9.DE.15{Na}{Ca2}{Mg4Al}(Al2Si6O22)(OH)2
Phillipsite-Ca9.GC.10(Ca0.5,K,Na,Ba0.5)4-7[Al4-7Si12-9O32 . 12H2O
Phillipsite-K9.GC.10(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
Phillipsite-Na9.GC.10(Na,K,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] · 12H2O
Phlogopite9.EC.20KMg3(AlSi3O10)(OH)2
Polylithionite9.EC.20KLi2Al(Si4O10)(F,OH)2
Prehnite9.DP.20Ca2Al2Si3O10(OH)2
Pyrope9.AD.25Mg3Al2(SiO4)3
Rectorite9.EC.60(Na,Ca)Al4((Si,Al)8O20)(OH)4 · 2H2O
Richterite9.DE.20{Na}{NaCa}{Mg5}(Si8O22)(OH)2
Sanidine9.FA.30K(AlSi3O8)
Schorl9.CK.05Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Scolecite ?9.GA.05CaAl2Si3O10 · 3H2O
Sillimanite9.AF.05Al2(SiO4)O
Spessartine9.AD.25Mn2+3Al2(SiO4)3
Spodumene9.DA.30LiAlSi2O6
Stellerite9.GE.15Ca4(Si28Al8)O72 · 28H2O
Stilbite-Na9.GE.10(Na,Ca,K)6-7[Al8Si28O72] · nH2O
Stilpnomelane9.EG.40(K,Ca,Na)(Fe2+,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
Talc9.EC.05Mg3Si4O10(OH)2
Thomsonite-Ca9.GA.10NaCa2[Al5Si5O20] · 6H2O
Titanite9.AG.15CaTi(SiO4)O
Tobermorite ?9.DG.10[Ca4Si6O17 · 2H2O]·(Ca·3H2O)
Topaz9.AF.35Al2(SiO4)(F,OH)2
Tremolite9.DE.10☐{Ca2}{Mg5}(Si8O22)(OH)2
'Uvite Series'9..Ca(Mg3)MgAl5(Si6O18)(BO3)3(OH)3(F/OH)
Vesuvianite9.BG.35(Ca,Na,☐)19(Al,Mg,Fe3+)13(☐,B,Al,Fe3+)5(Si2O7)4(SiO4)10(OH,F,O)10
Winchite9.DE.20☐{CaNa}{Mg4Al}(Si8O22)(OH)2
Wollastonite9.DG.05CaSiO3
Xonotlite9.DG.35Ca6(Si6O17)(OH)2
Zircon9.AD.30Zr(SiO4)
Group 10 - Organic Compounds
Whewellite10.AB.45Ca(C2O4) · H2O
Unclassified Minerals, Rocks, etc.
'Albite-Anorthite Series'-
'Allanite Group'-{A12+REE3+}{M3+2M32+}(Si2O7)(SiO4)O(OH)
'Almandine-Spessartine Series'-
'Amber'-
'Andorite'-AgPbSb3S6
'Andradite-Grossular Series'-
'Apatite'-
'Axinite Group'-
'Bariopharmacosiderite-C'-
'Biotite'-
'var: Titanian Biotite'-
'Calcite Group'-AXO3
'Chabazite'-
'var: Phacolite'-
'Chlorite Group'-
'Clays'-
'Clinoptilolite'-
'Clinopyroxene Subgroup'-
'Columbite-Tantalite'-
'Diopside-Hedenbergite Series'-
'Elbaite-Schorl Series'-
'Epidote Supergroup'-A2M3(Si2O7)(SiO4)O(OH)
'Fayalite-Forsterite Series'-
'Feldspar Group'-
'var: Perthite'-
'Ferrierite'-
'Ferrocalcite'-
'Garnet Group'-X3Z2(SiO4)3
'Glass'-
Glauconite-(K,Na)(Mg,Fe2+,Fe3+)(Fe3+,Al)(Si,Al)4O10(OH)2
'Gmelinite'-
'var: Ledererite'-
'Heulandite subgroup'-
Hexamolybdenum-(Mo,Ru,Fe,Ir,Os)
'Hornblende'-
Hydroxycalcioroméite-(Ca,Sb3+)2(Sb5+,Ti)2O6(OH)
'Jahnsite Group'-XM1M22M32(H2O)8(OH)2(PO4)4
Joséite-A-Bi4TeS2
'K Feldspar'-
'Lepidolite'-
Leucoxene-
'Limonite'-(Fe,O,OH,H2O)
Luinaite-(OH)-Na(Fe2+)3Al6(Si6O18)(BO3)3(OH)3(OH)
'Lévyne'-
Machiite (TL)-Al2Ti3O9
'Manganese Oxides'-
'var: Manganese Dendrites'-
'Melilite Group'-Ca2M(XSiO7)
Metanatroautunite-Na(UO2)(PO4)(H2O)3
'Mica Group'-
'Monazite'-
'Monazite Group'-MTO4, where M = REE, Th, Ca, Bi; T = P, As
Murchisite (TL)-Cr5S6
'Orthopyroxene Subgroup'-
'Petrified Wood'-
'Phillipsite'-
'Plessite'-
'Psilomelane'-
'Pumpellyite'-
'Retinite'-
'Selwynite (of Ulrich) '-
'Serpentine Subgroup'-D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
'Smectite Group'-A0.3D2-3[T4O10]Z2 · nH2O
'Stilbite subgroup'-
'Thomsonite'-
'Thunder Egg'-
'Tourmaline'-A(D3)G6(T6O18)(BO3)3X3Z
Warkite (TL)-Ca2Sc6Al6O20
'Whiteite'-
'Wolframite'-(Fe2+)WO4 to (Mn2+)WO4
'Xenotime'-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Cohenite1.1.16.1Fe3C
Copper1.1.1.3Cu
Gold1.1.1.1Au
Iron
var: Kamacite
1.1.11.1(Fe,Ni)
Maldonite (TL)1.1.3.1Au2Bi
Mercury1.1.7.1Hg
Schreibersite1.1.21.2(Fe,Ni)3P
Silver1.1.1.2Ag
Taenite1.1.11.2(Fe,Ni)
Zinc1.1.5.1Zn
Semi-metals and non-metals
Antimony1.3.1.2Sb
Arsenic1.3.1.1As
Bismuth1.3.1.4Bi
Diamond1.3.6.1C
Graphite1.3.6.2C
Nierite1.3.10.1Si3N4
Sulphur1.3.5.1S8
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Acanthite2.4.1.1Ag2S
Chalcocite2.4.7.1Cu2S
Digenite2.4.7.3Cu9S5
Djurleite2.4.7.2Cu31S16
AmBnXp, with (m+n):p = 3:2
Bornite2.5.2.1Cu5FeS4
AmBnXp, with (m+n):p = 4:3
Hedleyite2.6.3.3Bi7Te3
Joséite-B2.6.2.2Bi4Te2S
Rucklidgeite2.6.2.7PbBi2Te4
AmBnXp, with (m+n):p = 9:8
Pentlandite2.7.1.1(FexNiy)Σ9S8
AmXp, with m:p = 1:1
Cinnabar2.8.14.1HgS
Covellite2.8.12.1CuS
Galena2.8.1.1PbS
Metacinnabar2.8.2.3HgS
Millerite2.8.16.1NiS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
Sulphotsumoite2.8.20.2Bi3Te2S
Troilite2.8.9.1FeS
Tsumoite2.8.20.1BiTe
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
Cubanite2.9.13.1CuFe2S3
AmBnXp, with (m+n):p = 3:4
Daubréelite2.10.1.11Fe2+Cr3+2S4
Polydymite2.10.1.7Ni2+Ni3+2S4
Siegenite2.10.1.6CoNi2S4
Violarite2.10.1.8Fe2+Ni3+2S4
AmBnXp, with (m+n):p = 2:3
Bismuthinite2.11.2.3Bi2S3
Stibnite2.11.2.1Sb2S3
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Aurostibite2.12.1.11AuSb2
Cobaltite2.12.3.1CoAsS
Gersdorffite2.12.3.2NiAsS
Löllingite2.12.2.9FeAs2
Marcasite2.12.2.1FeS2
Merenskyite2.12.14.4(Pd,Pt)(Te,Bi)2
Molybdenite2.12.10.1MoS2
Pyrite2.12.1.1FeS2
Sperrylite2.12.1.13PtAs2
Oxysulfides
Kermesite2.13.1.1Sb2S2O
Hydroxysulfides and Hydrated Sulfides
Tochilinite2.14.2.1Fe2+5-6(Mg,Fe2+)5S6(OH)10
Valleriite2.14.1.1(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
Group 3 - SULFOSALTS
ø = 4
Enargite3.2.1.1Cu3AsS4
Stephanite3.2.4.1Ag5SbS4
3 <ø < 4
Freibergite3.3.6.3Ag6[Cu4Fe2]Sb4S13-x
Tennantite3.3.6.2Cu6[Cu4(Fe,Zn)2]As4S13
Tetrahedrite3.3.6.1Cu6[Cu4(Fe,Zn)2]Sb4S13
ø = 3
Aikinite3.4.5.1PbCuBiS3
Bournonite3.4.3.2PbCuSbS3
Proustite3.4.1.1Ag3AsS3
Pyrargyrite3.4.1.2Ag3SbS3
Wittichenite3.4.8.1Cu3BiS3
Xanthoconite3.4.2.1Ag3AsS3
2.5 < ø < 3
Boulangerite3.5.2.1Pb5Sb4S11
Owyheeite3.5.10.1Ag3+xPb10-2xSb11+xS28, -0.13 < x > +0.20
Zoubekite ?3.5.14.1AgPb4Sb4S10
2 < ø < 2.49
Jamesonite3.6.7.1Pb4FeSb6S14
ø = 2
Berthierite3.7.9.3FeSb2S4
Miargyrite3.7.3.2AgSbS2
Trechmannite3.7.2.1AgAsS2
1 < ø < 2
Zinkenite3.8.1.1Pb9Sb22S42
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
AX
Lime4.2.1.5CaO
A2X3
Bismite4.3.10.2Bi2O3
Claudetite4.3.10.1As2O3
Corundum4.3.1.1Al2O3
Eskolaite4.3.1.3Cr2O3
Hematite4.3.1.2Fe2O3
Ilmenite4.3.5.1Fe2+TiO3
Maghemite4.3.7.1Fe3+2O3
Perovskite4.3.3.1CaTiO3
Senarmontite4.3.9.2Sb2O3
Valentinite4.3.11.1Sb2O3
AX2
Anatase4.4.4.1TiO2
Brookite4.4.5.1TiO2
Cassiterite4.4.1.5SnO2
Cervantite4.4.16.1Sb3+Sb5+O4
Pyrolusite4.4.1.4Mn4+O2
Rutile4.4.1.1TiO2
var: Ilmenorutile4.4.1.2Fex(Nb,Ta)2x · 4Ti1-xO2
AX3
Molybdite4.5.1.1MoO3
Group 5 - OXIDES CONTAINING URANIUM OR THORIUM
AXO2·xH2O
Thorianite5.1.1.2ThO2
Uraninite5.1.1.1UO2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Diaspore6.1.1.1AlO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Lepidocrocite6.1.2.2γ-Fe3+O(OH)
X(OH)2
Portlandite6.2.1.4Ca(OH)2
Miscellaneous
Lithiophorite6.4.1.1(Al,Li)MnO2(OH)2
Group 7 - MULTIPLE OXIDES
AB2X4
Chromite7.2.3.3Fe2+Cr3+2O4
Chrysoberyl7.2.9.1BeAl2O4
Magnetite7.2.2.3Fe2+Fe3+2O4
Spinel7.2.1.1MgAl2O4
Ulvöspinel7.2.5.2TiFe2O4
(AB)10X14
Grossite7.3.2.1CaAl4O7
AB12X19
Hibonite7.4.1.1(Ca,Ce)(Al,Ti,Mg)12O19
(AB)2X3
Birnessite7.5.3.1(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
AB2X5
Pseudobrookite7.7.1.1Fe2TiO5
AB3X7
Chalcophanite7.8.2.1(Zn,Fe,Mn)Mn3O7 · 3H2O
AB4X9
Ranciéite7.10.1.1(Ca,Mn2+)0.2(Mn4+,Mn3+)O2 · 0.6H2O
Miscellaneous
Pseudorutile
var: Hydroxylian Pseudorutile
7.11.10.1FeTi6O13 · 4H2O ?
Group 8 - MULTIPLE OXIDES CONTAINING NIOBIUM,TANTALUM OR TITANIUM
A2B2O6(O,OH,F)
'Microlite Group'8.2.2.1A2-mTa2X6-wZ-n
AB2O6
Columbite-(Fe)8.3.2.2Fe2+Nb2O6
Tantalite-(Mn)8.3.2.3Mn2+Ta2O6
A2B3O9
Pseudorutile8.4.2.1Fe2Ti3O9
Group 9 - NORMAL HALIDES
AX
Chlorargyrite9.1.4.1AgCl
Halite9.1.1.1NaCl
Iodargyrite9.1.5.1AgI
AX2
Fluorite9.2.1.1CaF2
Group 10 - OXYHALIDES AND HYDROXYHALIDES
A2(O,OH)3Xq
Atacamite10.1.1.1Cu2(OH)3Cl
Paratacamite10.1.2.1Cu3(Cu,Zn)(OH)6Cl2
A(O,OH)Xq
Bismoclite10.2.1.2BiOCl
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Cerussite14.1.3.4PbCO3
Magnesite14.1.1.2MgCO3
Rhodochrosite14.1.1.4MnCO3
Siderite14.1.1.3FeCO3
Smithsonite14.1.1.6ZnCO3
AB(XO3)2
Ankerite14.2.1.2Ca(Fe2+,Mg)(CO3)2
Dolomite14.2.1.1CaMg(CO3)2
Miscellaneous
Huntite14.4.3.1CaMg3(CO3)4
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Azurite16a.2.1.1Cu3(CO3)2(OH)2
Bismutite16a.3.5.1(BiO)2CO3
Malachite16a.3.1.1Cu2(CO3)(OH)2
Rosasite16a.3.1.2(Cu,Zn)2(CO3)(OH)2
Aurichalcite16a.4.2.1(Zn,Cu)5(CO3)2(OH)6
Group 16b - HYDRATED CARBONATES CONTAINING HYDROXYL OR HALOGEN
Reevesite16b.6.3.1Ni6Fe3+2(OH)16(CO3) · 4H2O
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Anglesite28.3.1.3PbSO4
Baryte28.3.1.1BaSO4
Celestine28.3.1.2SrSO4
Miscellaneous
Glauberite28.4.2.1Na2Ca(SO4)2
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AB(XO4)2·xH2O
Tamarugite29.5.3.1NaAl(SO4)2 · 6H2O
AXO4·xH2O
Chalcanthite29.6.7.1CuSO4 · 5H2O
Epsomite29.6.11.1MgSO4 · 7H2O
Gypsum29.6.3.1CaSO4 · 2H2O
Hexahydrite29.6.8.1MgSO4 · 6H2O
Ilesite29.6.6.3(Mn,Zn,Fe)SO4 · 4H2O
Jôkokuite29.6.7.4MnSO4 · 5H2O
Melanterite29.6.10.1Fe2+(H2O)6SO4 · H2O
Szmikite29.6.2.3MnSO4 · H2O
AB2(XO4)4·H2O
Halotrichite29.7.3.2FeAl2(SO4)4 · 22H2O
Pickeringite29.7.3.1MgAl2(SO4)4 · 22H2O
A2(XO4)3·H2O
Alunogen29.8.6.1Al2(SO4)3 · 17H2O
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)m(XO4)pZq, where m:p>2:1
Brochantite30.1.3.1Cu4(SO4)(OH)6
(AB)2(XO4)Zq
Alunite30.2.4.1KAl3(SO4)2(OH)6
Jarosite30.2.5.1KFe3+ 3(SO4)2(OH)6
Group 31 - HYDRATED SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)m(XO4)pZq·xH2O, where m:p > 6:1
Connellite31.1.1.1Cu19(SO4)(OH)32Cl4 · 3H2O
(AB)4(XO4)Zq·xH2O
Felsőbányaite31.4.4.1Al4(SO4)(OH)10 · 4H2O
(AB)3(XO4)2Zq·xH2O
Sideronatrite31.8.3.1Na2Fe(SO4)2(OH) · 3H2O
(AB)(XO4)Zq·xH2O
Fibroferrite31.9.12.1Fe3+(SO4)(OH) · 5H2O
Group 38 - ANHYDROUS NORMAL PHOSPHATES, ARSENATES, AND VANADATES
ABXO4
Triphylite38.1.1.1LiFe2+PO4
(AB)5(XO4)3
Alluaudite38.2.3.6(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
(AB)3(XO4)2
Merrillite38.3.4.4Ca9NaMg(PO4)7
AXO4
Cheralite38.4.3.5CaTh(PO4)2
Heterosite38.4.1.1(Fe3+,Mn3+)PO4
Kosnarite38.4.12.1KZr2(PO4)3
Monazite-(Ce)38.4.3.1Ce(PO4)
Pucherite38.4.6.1Bi(VO4)
Purpurite38.4.1.2(Mn3+,Fe3+)PO4
Miscellaneous
Namibite38.5.9.1Cu(BiO)2(VO4)(OH)
Group 39 - HYDRATED ACID PHOSPHATES,ARSENATES AND VANADATES
A[HXO4]·xH2O
Brushite39.1.1.1Ca(HPO4) · 2H2O
Newberyite (TL)39.1.6.1Mg(HPO4) · 3H2O
Miscellaneous
Hannayite (TL)39.3.5.1(NH4)2Mg3H4(PO4)4 · 8H2O
Schertelite (TL)39.3.2.1(NH4)2MgH2(PO4)2 · 4H2O
Stercorite ?39.3.1.1Na(NH4)HPO4 · 4H2O
Taranakite39.3.6.1(K,NH4)Al3(PO4)3(OH) · 9H2O
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
AB(XO4)·xH2O
Dittmarite (TL)40.1.2.1(NH4)Mg(PO4) · H2O
Struvite40.1.1.1(NH4)Mg(PO4) · 6H2O
AB2(XO4)2·xH2O, containing (UO2)2+
Autunite40.2a.1.1Ca(UO2)2(PO4)2 · 11H2O
Meta-autunite40.2a.1.2Ca(UO2)2(PO4)2 · 6-8H2O
Metanatroautunite40.2a.5.1Na(UO2)(PO4)(H2O)3
Metatorbernite40.2a.13.2Cu(UO2)2(PO4)2 · 8H2O
Saléeite40.2a.11.1Mg(UO2)2(PO4)2 · 10H2O
Torbernite40.2a.13.1Cu(UO2)2(PO4)2 · 12H2O
Ulrichite (TL)40.2a.30.1CaCu(UO2)(PO4)2 · 4H2O
A3(XO4)2·xH2O
Kryzhanovskite40.3.2.2(Fe3+,Mn2+)3(PO4)2(OH,H2O)3
Phosphoferrite40.3.2.1(Fe2+,Mn2+)3(PO4)2 · 3H2O
Vivianite40.3.6.1Fe2+3(PO4)2 · 8H2O
(AB)5(XO4)2·xH2O
Phosphosiderite40.4.3.2FePO4 · 2H2O
Scorodite40.4.1.3Fe3+AsO4 · 2H2O
Strengite40.4.1.2FePO4 · 2H2O
Variscite40.4.1.1AlPO4 · 2H2O
AXO4·xH2O
Selwynite (TL)40.5.4.3NaK(Be,Al)Zr2(PO4)4 · 2H2O
Wycheproofite (TL)40.5.5.1NaAlZr(PO4)2(OH) · H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)5(XO4)2Zq
Pseudomalachite41.4.3.1Cu5(PO4)2(OH)4
(AB)2(XO4)Zq
Amblygonite41.5.8.1LiAl(PO4)F
Brazilianite41.5.7.1NaAl3(PO4)2(OH)4
Descloizite41.5.2.1PbZn(VO4)(OH)
Lacroixite41.5.5.1NaAl(PO4)F
Montebrasite41.5.8.2LiAl(PO4)(OH)
A2(XO4)Zq
Libethenite41.6.6.2Cu2(PO4)(OH)
Triplite41.6.1.2(Mn2+,Fe2+)2(PO4)(F,OH)
Wolfeite41.6.3.1(Fe2+,Mn2+)2(PO4)(OH)
Zwieselite41.6.1.1(Fe2+,Mn2+)2(PO4)F
(AB)7(XO4)4Zq
Arrojadite-(KFe)41.7.2.1{KNa}{Fe2+◻}{Ca}{Na2◻}{Fe2+13}{Al}(PO4)11(HPO4)(OH)2
Bertossaite41.7.1.2(Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4
A5(XO4)3Zq
Fluorapatite41.8.1.1Ca5(PO4)3F
var: Carbonate-rich Fluorapatite41.8.1.4Ca5(PO4,CO3)3(F,O)
Hydroxylapatite41.8.1.3Ca5(PO4)3(OH)
Mimetite41.8.4.2Pb5(AsO4)3Cl
Pyromorphite41.8.4.1Pb5(PO4)3Cl
(AB)5(XO4)3Zq
Rockbridgeite41.9.2.1Fe2+Fe3+4(PO4)3(OH)5
(AB)3(XO4)2Zq
Lazulite41.10.1.1MgAl2(PO4)2(OH)2
Schumacherite41.10.9.2Bi3(VO4)2O(OH)
Scorzalite41.10.1.2Fe2+Al2(PO4)2(OH)2
Group 42 - HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)5(XO4)2Zq·xH2O
Mrázekite42.4.15.1Bi2Cu3(PO4)2O2(OH)2 · H2O
Phosphuranylite42.4.8.1(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
A2(XO4)Zq·xH2O
Fluellite42.6.9.1Al2(PO4)F2(OH) · 7H2O
(AB)2(XO4)Zq·xH2O
Crandallite42.7.3.1CaAl3(PO4)(PO3OH)(OH)6
Cyrilovite42.7.8.1NaFe3+3(PO4)2(OH)4 · 2H2O
Eosphorite42.7.1.2Mn2+Al(PO4)(OH)2 · H2O
Gorceixite42.7.3.2BaAl3(PO4)(PO3OH)(OH)6
Goyazite42.7.3.3SrAl3(PO4)(PO3OH)(OH)6
Philipsbornite42.7.4.2PbAl3(AsO4)(AsO3OH)(OH)6
Plumbogummite42.7.3.5PbAl3(PO4)(PO3OH)(OH)6
Segnitite42.7.4.4PbFe3+3AsO4(AsO3OH)(OH)6
Wardite42.7.8.2NaAl3(PO4)2(OH)4 · 2H2O
(AB)5(XO4)3Zq·xH2O
Bariopharmacosiderite42.8.1a.3Ba0.5Fe3+4(AsO4)3(OH)4 · 5H2O
Kidwellite42.8.2.1NaFe3+9+x(PO4)6(OH)11 · 3H2O, x = 0.33
Natropharmacosiderite42.8.1.2(Na,K)Fe3+4(AsO4)3(OH)4 · 6-7H2O
Pharmacosiderite42.8.1a.1KFe3+4(AsO4)3(OH)4 · 6-7H2O
(AB)7(XO4)4Zq·xH2O
Chalcosiderite42.9.3.4CuFe3+6(PO4)4(OH)8 · 4H2O
Dufrénite42.9.1.2Ca0.5Fe2+Fe3+5(PO4)4(OH)6 · 2H2O
Faustite42.9.3.3(Zn,Cu)Al6(PO4)4(OH)8 · 4H2O
Lavendulan42.9.4.2NaCaCu5(AsO4)4Cl · 5H2O
Natrodufrénite42.9.1.3NaFe2+Fe3+5(PO4)4(OH)6 · 2H2O
Planerite42.9.3.6Al6(PO4)2(HPO4)2(OH)8 · 4 H2O
Sampleite42.9.4.1NaCaCu5(PO4)4Cl · 5H2O
Turquoise42.9.3.1Cu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
A3(XO4)2Zq·xH2O
Wavellite42.10.2.1Al3(PO4)2(OH,F)3 · 5H2O
(AB)3(XO4)2Zq·xH2O
Beraunite42.11.16.1Fe2+Fe3+5(PO4)4(OH)5 · 6H2O
Gordonite42.11.14.4MgAl2(PO4)2(OH)2 · 8H2O
Keckite42.11.4.1CaMn2+(Fe3+Mn2+)Fe3+2(PO4)4(OH)3 · 7H2O
Kunatite (TL)42.11.20.7CuFe3+2(PO4)2(OH)2 · 4H2O
Leucophosphite42.11.6.1KFe3+2(PO4)2(OH) · 2H2O
Montgomeryite42.11.8.1Ca4MgAl4(PO4)6(OH)4 · 12H2O
Strunzite ?42.11.9.1Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Whitmoreite42.11.20.1Fe2+Fe3+2(PO4)2(OH)2 · 4H2O
Miscellaneous
Cacoxenite42.13.5.1Fe3+24AlO6(PO4)17(OH)12 · 75H2O
Lakebogaite (TL)42.13.18.1CaNaFe3+2H(UO2)2(PO4)4(OH)2 · 8H2O
Meurigite-K42.13.14.1KFe3+8(PO4)6(OH)7 · 6.5H2O
Meurigite-Na42.13.14.2NaFe3+8(PO4)6(OH)7 · 6.5H2O
Group 43 - COMPOUND PHOSPHATES, ETC.
Anhydrous Compound Phosphates, etc·, Containing Hydroxyl or Halogen
Beudantite43.4.1.1PbFe3(AsO4)(SO4)(OH)6
Hidalgoite43.4.1.3PbAl3(AsO4)(SO4)(OH)6
Hydrated Compound Phosphates, etc·, Containing Hydroxyl or Halogen
Sasaite43.5.4.1(Al,Fe3+)14(PO4)11(SO4)(OH)7 · 83H2O
Group 44 - ANTIMONATES
A2X2O6(O,OH,F)
'Stibiconite'44.1.1.1Sb3+Sb5+2O6(OH)
Group 48 - ANHYDROUS MOLYBDATES AND TUNGSTATES
AXO4
Ferberite48.1.1.2FeWO4
Hübnerite48.1.1.1MnWO4
Powellite48.1.2.2Ca(MoO4)
Scheelite48.1.2.1Ca(WO4)
Wulfenite48.1.3.1Pb(MoO4)
A2XO4
Koechlinite48.2.2.1Bi2MoO6
Russellite48.2.1.1Bi2WO6
Group 49 - HYDRATED MOLYBDATES AND TUNGSTATES
Hydrated Normal Molybdates and Tungstates
Ferrimolybdite49.2.1.1Fe2(MoO4)3 · nH2O
Group 50 - ORGANIC COMPOUNDS
Oxalates
Whewellite50.1.1.1Ca(C2O4) · H2O
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with all cations in octahedral [6] coordination
Fayalite51.3.1.1Fe2+2SiO4
Forsterite51.3.1.2Mg2SiO4
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Almandine51.4.3a.2Fe2+3Al2(SiO4)3
Andradite51.4.3b.1Ca3Fe3+2(SiO4)3
Grossular51.4.3b.2Ca3Al2(SiO4)3
Pyrope51.4.3a.1Mg3Al2(SiO4)3
Spessartine51.4.3a.3Mn2+3Al2(SiO4)3
Insular SiO4 Groups Only with cations in >[6] coordination
Eulytine51.5.4.1Bi4(SiO4)3
Huttonite51.5.3.1ThSiO4
Zircon51.5.2.1Zr(SiO4)
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [4] and >[4] coordination
Andalusite52.2.2b.1Al2(SiO4)O
Sillimanite52.2.2a.1Al2(SiO4)O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] coordination only
Topaz52.3.1.1Al2(SiO4)(F,OH)2
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] and/or >[6] coordination
Bultfonteinite52.4.7.2Ca2(HSiO4)F · H2O
Titanite52.4.3.1CaTi(SiO4)O
Group 54 - NESOSILICATES Borosilicates and Some Beryllosilicates
Borosilicates and Some Beryllosilicates with (BO3)
Dumortierite54.1.2.1(Al,Fe3+)7(SiO4)3(BO3)O3
Borosilicates and Some Beryllosilicates with B in [4] coordination
Datolite54.2.1a.1CaB(SiO4)(OH)
Group 56 - SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
Si2O7 Groups and O, OH, F, and H2O with cations in [4] coordination
Hemimorphite56.1.2.1Zn4Si2O7(OH)2 · H2O
Si2O7 Groups and O, OH, F, and H2O with cations in [4] and/or >[4] coordination
Axinite-(Fe)56.2.2.1Ca2Fe2+Al2BSi4O15OH
Axinite-(Mn)56.2.2.3Ca2Mn2+Al2BSi4O15(OH)
Cuspidine56.2.4.3Ca4(Si2O7)(F,OH)2
Si2O7 Groups and O, OH, F, and H2O with[Si2O7] with borate groups
Danburite56.3.1.1CaB2Si2O8
Group 58 - SOROSILICATES Insular, Mixed, Single, and Larger Tetrahedral Groups
Insular, Mixed, Single, and Larger Tetrahedral Groups with cations in [6] and higher coordination; single and double groups (n = 1, 2)
Allanite-(Ce)58.2.1a.1{CaCe}{Al2Fe2+}(Si2O7)(SiO4)O(OH)
Clinozoisite58.2.1a.4{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Epidote58.2.1a.7{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Vesuvianite58.2.4.1(Ca,Na,☐)19(Al,Mg,Fe3+)13(☐,B,Al,Fe3+)5(Si2O7)4(SiO4)10(OH,F,O)10
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution
Beryl61.1.1.1Be3Al2(Si6O18)
Six-Membered Rings with Al substituted rings
Cordierite61.2.1.1(Mg,Fe)2Al3(AlSi5O18)
Six-Membered Rings with borate groups
Dravite61.3.1.9Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Elbaite61.3.1.8Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Luinaite-(OH)61.3.7.Na(Fe2+)3Al6(Si6O18)(BO3)3(OH)3(OH)
Schorl61.3.1.10Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
'Uvite Series'61.3.1.3Ca(Mg3)MgAl5(Si6O18)(BO3)3(OH)3(F/OH)
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Aegirine65.1.3c.2NaFe3+Si2O6
Aegirine-augite65.1.3b.2(NaaCabFe2+cMgd)(Fe3+eAlfFe2+gMgh)Si2O6
Augite65.1.3a.3(CaxMgyFez)(Mgy1Fez1)Si2O6
Clinoenstatite65.1.1.1MgSiO3
Diopside65.1.3a.1CaMgSi2O6
Enstatite65.1.2.1MgSiO3
Ferrosilite65.1.2.2FeSiO3
Hedenbergite ?65.1.3a.2CaFe2+Si2O6
Omphacite65.1.3b.1(NaaCabFe2+cMgd)(AleFe3+fFe2+gMgh)Si2O6
Spodumene65.1.4.1LiAlSi2O6
Single-Width Unbranched Chains, W=1 with chains P=3
Foshagite65.2.2.1Ca4(Si3O9)(OH)2
Wollastonite65.2.1.1cCaSiO3
Single-Width Unbranched Chains, W=1 with chains P=5
Babingtonite65.4.1.2Ca2(Fe,Mn)FeSi5O14(OH)
Group 66 - INOSILICATES Double-Width,Unbranched Chains,(W=2)
Amphiboles - Mg-Fe-Mn-Li subgroup
Glaucophane66.1.3c.1◻[Na2][Mg3Al2]Si8O22(OH)2
Kaersutite66.1.3a.18{Na}{Ca2}{Mg3AlTi}(Al2Si6O22)O2
Pargasite66.1.3a.12{Na}{Ca2}{Mg4Al}(Al2Si6O22)(OH)2
Richterite66.1.3b.9{Na}{NaCa}{Mg5}(Si8O22)(OH)2
Tremolite66.1.3a.1☐{Ca2}{Mg5}(Si8O22)(OH)2
Winchite66.1.3b.1☐{CaNa}{Mg4Al}(Si8O22)(OH)2
Amphiboles - Ca-Na subgroup
Xonotlite66.3.1.1Ca6(Si6O17)(OH)2
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
Allophane71.1.5.1(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Antigorite71.1.2a.1Mg3(Si2O5)(OH)4
'Clinochrysotile'71.1.2d.1
Cronstedtite71.1.4.7Fe2+2Fe3+((Si,Fe3+)2O5)(OH)4
Dickite71.1.1.1Al2(Si2O5)(OH)4
Greenalite71.1.2b.4(Fe2+,Fe3+)2-3Si2O5(OH)4
'Halloysite'71.1.1.4Al2(Si2O5)(OH)4
Hisingerite71.1.5.2Fe3+2(Si2O5)(OH)4 · 2H2O
Lizardite71.1.2b.2Mg3(Si2O5)(OH)4
Sheets of 6-membered rings with 2:1 layers
Annite71.2.2b.3KFe2+3(AlSi3O10)(OH)2
Glauconite71.2.2a.5(K,Na)(Mg,Fe2+,Fe3+)(Fe3+,Al)(Si,Al)4O10(OH)2
Minnesotaite71.2.1.5Fe2+3Si4O10(OH)2
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
var: Illite71.2.2d.2K0.65Al2.0[Al0.65Si3.35O10](OH)2
Phlogopite71.2.2b.1KMg3(AlSi3O10)(OH)2
Polylithionite71.2.2b.8KLi2Al(Si4O10)(F,OH)2
Talc71.2.1.3Mg3Si4O10(OH)2
Sheets of 6-membered rings with 2:1 clays
Montmorillonite71.3.1a.2(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Nontronite71.3.1a.3Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Sheets of 6-membered rings interlayered 1:1, 2:1, and octahedra
Clinochlore71.4.1.4